Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors

Abstract

The role of corticosterone (Cort), the immune system’s major stress hormone, in the regulation of hematopoietic stem and progenitor cells (HSPCs) and their dynamic bone marrow (BM) microenvironment is currently unknown. We report that corticotropin-releasing factor receptor 1 (CRFR1) mutant mice with chronically low Cort levels showed aberrant HSPC regulation, having higher HSPC numbers and upregulation of the chemokine CXCL12, phenotypes that were restored by Cort supplementation. Expanded stromal progenitors known to support HSPCs were also observed in these low-Cort-containing mice. A similar phenotype was induced in wild-type (WT) mice by Metyrapone, a Cort synthesis inhibitor. Conversely, high Cort exposure induced HSPC apoptosis, reduced long-term BM repopulation and decreased stromal progenitor cell numbers. We documented circadian oscillations of Cort in WT BM but not in CRFR1 mutant mice, leading to diminished circadian BM CXCL12 fluctuations and increased number of circulating HSPCs in these mice. Finally, low Cort induced expansion of stromal progenitors, CXCL12 expression, HSPC proliferation and BM repopulation capacity, involving Notch1 signaling. This was associated with upregulation of the Notch ligand, Jagged1, in BM myeloid cells. Our results suggest that daily physiologic Cort oscillations are critical for balanced HSPC proliferation and function involving Notch1 signaling and their supportive BM microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Spiegel A, Kalinkovich A, Shivtiel S, Kollet O, Lapidot T . Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2008; 3: 484–492.

    Article  CAS  PubMed  Google Scholar 

  2. Mendez-Ferrer S, Chow A, Merad M, Frenette PS . Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 2009; 16: 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lapidot T, Kollet O . The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010; 2010: 1–6.

    Article  PubMed  Google Scholar 

  4. Lo Celso C, Scadden DT . The haematopoietic stem cell niche at a glance. J Cell Sci 2011; 124: 3529–3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  7. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  8. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding L, Saunders TL, Enikolopov G, Morrison SJ . Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 2011; 25: 1378.

    Article  Google Scholar 

  11. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  PubMed  Google Scholar 

  12. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34(+) cells through Wnt signaling. Nat Immunol 2007; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  13. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS . Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442–447.

    Article  CAS  PubMed  Google Scholar 

  14. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S et al. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 2011; 147: 1146–1158.

    Article  CAS  PubMed  Google Scholar 

  15. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  PubMed  Google Scholar 

  16. Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.

    Article  CAS  PubMed  Google Scholar 

  17. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  PubMed  Google Scholar 

  18. Pajcini KV, Speck NA, Pear WS . Notch signaling in mammalian hematopoietic stem cells. Leukemia 2011; 25: 1525–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99: 2369–2378.

    Article  CAS  PubMed  Google Scholar 

  20. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Sato C, Cerletti M, Wagers A . Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 2010; 92: 367–409.

    Article  CAS  PubMed  Google Scholar 

  22. Chiba S . Notch signaling in stem cell systems. Stem Cells 2006; 24: 2437–2447.

    Article  CAS  PubMed  Google Scholar 

  23. Son GH, Chung S, Kim K . The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32: 451–465.

    Article  CAS  PubMed  Google Scholar 

  24. Baschant U, Tuckermann J . The role of the glucocorticoid receptor in inflammation and immunity. The J Steroid Biochem Mol Biol 2010; 120: 69–75.

    Article  CAS  PubMed  Google Scholar 

  25. Glaser R, Kiecolt-Glaser JK . Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005; 5: 243–251.

    Article  CAS  PubMed  Google Scholar 

  26. Flygare J, Rayon Estrada V, Shin C, Gupta S, Lodish HF . HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 2011; 117: 3435–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Igarashi H, Medina KL, Yokota T, Rossi MI, Sakaguchi N, Comp PC et al. Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids. Internatl Immunol 2005; 17: 501–511.

    Article  CAS  Google Scholar 

  28. Trottier MD, Newsted MM, King LE, Fraker PJ . Natural glucocorticoids induce expansion of all developmental stages of murine bone marrow granulocytes without inhibiting function. Proc Natl Acad Sci USA 2008; 105: 2028–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  30. Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G . Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 2004; 469: 311–324.

    Article  CAS  PubMed  Google Scholar 

  31. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12: 657–664.

    Article  CAS  PubMed  Google Scholar 

  32. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15: 757–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E . Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 2011; 349: 20–29.

    Article  PubMed  Google Scholar 

  34. Ellis SL, Grassinger J, Jones A, Borg J, Camenisch T, Haylock D et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 2011; 118: 1516–1524.

    Article  CAS  PubMed  Google Scholar 

  35. Nie Y, Han YC, Zou YR . CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205: 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  37. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116: 4815–4828.

    Article  CAS  PubMed  Google Scholar 

  39. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC . Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208: 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 2012; 13: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  42. Nomaguchi K, Suzu S, Yamada M, Hayasawa H, Motoyoshi K . Expression of Jagged1 gene in macrophages and its regulation by hematopoietic growth factors. Exp Hematol 2001; 29: 850–855.

    Article  CAS  PubMed  Google Scholar 

  43. Lapidot T, Kollet O . The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 2002; 16: 1992–2003.

    Article  CAS  PubMed  Google Scholar 

  44. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM . Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 2011; 117: 429–439.

    Article  CAS  PubMed  Google Scholar 

  45. Lucas D, Battista M, Shi PA, Isola L, Frenette PS . Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 2008; 3: 364–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324–336.

    Article  CAS  PubMed  Google Scholar 

  47. Yu Y, Wei N, Stanford C, Schmidt T, Hong L . In vitro effects of RU486 on proliferation and differentiation capabilities of human bone marrow mesenchymal stromal cells. Steroids 2012; 77: 132–137.

    Article  CAS  PubMed  Google Scholar 

  48. Liao J, Hammerick KE, Challen GA, Goodell MA, Kasper FK, Mikos AG . Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. J Orthoc Res 2011; 29: 1544–1553.

    Article  CAS  Google Scholar 

  49. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344–2347.

    Article  CAS  PubMed  Google Scholar 

  50. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    Article  CAS  PubMed  Google Scholar 

  51. Mancini SJ, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F . Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 2005; 105: 2340–2342.

    Article  CAS  PubMed  Google Scholar 

  52. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2: 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wendorff AA, Koch U, Wunderlich FT, Wirth S, Dubey C, Bruning JC et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 2010; 33: 671–684.

    Article  CAS  PubMed  Google Scholar 

  54. Rathinam C, Matesic LE, Flavell RA . The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol 2011; 12: 399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jang YY, Sharkis SJ . A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110: 3056–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Myers J, Huang Y, Wei L, Yan Q, Huang A, Zhou L . Fucose-deficient hematopoietic stem cells have decreased self-renewal and aberrant marrow niche occupancy. Transfusion 2010; 50: 2660–2669.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 2008; 112: 4628–4638.

    Article  CAS  PubMed  Google Scholar 

  58. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009; 15: 50–58.

    Article  CAS  PubMed  Google Scholar 

  59. Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F, Bernstein ID . Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J Clin Invest 2011; 121: 1207–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Leona M and Harry B Helmsley Charitable Trust and the European Commission (CELL-PID—FP7) (TL, OK) and the Sergio Lombroso Foundation (GD, GC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Lapidot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollet, O., Vagima, Y., D'Uva, G. et al. Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia 27, 2006–2015 (2013). https://doi.org/10.1038/leu.2013.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.154

Keywords

This article is cited by

Search

Quick links