Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML

Abstract

Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77−/−nor1−/− mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34+/38 AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Stone RM, O’Donnell MR, Sekeres MA . Acute myeloid leukemia. Hematology 2004; 1: 98–117.

    Article  Google Scholar 

  2. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J et al. Abrogation of nuclear receptors Nr4a3 andNr4a1 leads to development of acute myeloid leukemia. Nat Med 2007; 13: 730–735.

    Article  CAS  PubMed  Google Scholar 

  3. Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM . Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 2011; 117: 2681–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolluri SK, Bruey-Sedano N, Cao X, Lin B, Lin F, Han Y-H et al. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 2003; 23: 8651–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pei L, Castrillo A, Chen M, Hoffmann A, Tontonoz P . Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J Biol Chem 2005; 280: 29256–29262.

    Article  CAS  PubMed  Google Scholar 

  6. Pei L, Castrillo A, Tontonoz P . Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol 2006; 20: 786–794.

    Article  CAS  PubMed  Google Scholar 

  7. Chao LC, Bensinger SJ, Villanueva CJ, Wroblewski K, Tontonoz P . Inhibition of adipocyte differentiation by Nur77, Nurr1 and Nor1. Mol Endocrinol 2008; 22: 2596–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson J, Winoto A . During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med 2008; 205: 1029–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H et al. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol 2008; 134: 803–812.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y-L, Jian M-H, Lin C-C, Kang J-C, Chen S-P, Lin P-C et al. The induction of orphan nuclear receptor Nur77 expression by n-butylenephthalide as pharmaceuticals on hepatocellular carcinoma cell therapy. Mol Pharmacol 2008; 74: 1046–1058.

    Article  CAS  PubMed  Google Scholar 

  11. Ye X-f, Wu Q, Liu S, Lin X-f, Zhang B, Wu J-f et al. Distinct role and functional mode of TR3 and RAR[alpha] in mediating ATRA-induced signalling pathway in breast and gastric cancer cells. Int J Biochem Cell Biol 2004; 36: 98–113.

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Wesselschmidt R, Linette G, Kanagawa O, Russell J, Milbrandt J . Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 1995; 269: 532–535.

    Article  CAS  PubMed  Google Scholar 

  13. Ponnio T, Burton Q, Pereira FA, Wu DK, Conneely OM . The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Mol Cell Biol 2002; 22: 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Winoto A, Littman DR . Nuclear hormone receptors in T lymphocytes. Cell 2002; 109 (Supple 1): S57–S66.

    Article  CAS  PubMed  Google Scholar 

  15. Li Q-X, Ke N, Sundaram R, Wong-Staal F . NR4A1, 2, 3—an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 2006; 21: 533–540.

    CAS  PubMed  Google Scholar 

  16. Zhang J, DeYoung A, Kasler HG, Kabra NH, Kuang AA, Diehl G et al. Receptor-mediated apoptosis in T lymphocytes. Cold Spring Harb Symp Quant Biol 1999; 64: 363–371.

    Article  CAS  PubMed  Google Scholar 

  17. Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 1997; 17: 5946–5951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.

    Article  CAS  PubMed  Google Scholar 

  19. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 391–400.

    Article  CAS  PubMed  Google Scholar 

  20. Giles RH, Peters DJM, Breuning MH . Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 1998; 14: 178–183.

    Article  CAS  PubMed  Google Scholar 

  21. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  PubMed  Google Scholar 

  22. Sakai K, Nagahara H, Abe K, Obata H . Loss of heterozygosity on chromosome 16 in hepatocellular carcinoma. J Gastroenterol Hepatol 1992; 7: 288–292.

    Article  CAS  PubMed  Google Scholar 

  23. Borrow J, Stanton VP, Andresen JM, Becher R, Behm FG, Chaganti RSK et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996; 14: 33–41.

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda A, Shankar DB, Watanabe M, Tamanoi F, Moore TB, Sakamoto KM . Molecular targets and the treatment of myeloid leukemia. Mol Genet Metab 2006; 88: 216–224.

    Article  CAS  PubMed  Google Scholar 

  25. Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S et al. All patients with the t(11; 16)(q23; p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 1997; 90: 535–541.

    CAS  PubMed  Google Scholar 

  26. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. PNAS 1998; 95: 10860–10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Saunthararajah Y, Redner RL, Liu JM . Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999; 59: 2766–2769.

    CAS  PubMed  Google Scholar 

  28. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  29. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 2005; 11: 71–76.

    Article  CAS  PubMed  Google Scholar 

  30. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  PubMed  Google Scholar 

  31. Rosato RR, Almenara JA, Grant S . The histone deacetylase inhibitor ms-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 2003; 63: 3637–3645.

    CAS  PubMed  Google Scholar 

  32. Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H et al. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 2008; 112: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S et al. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 2006; 108: 3271–3279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid (SAHA)) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111: 1060–1066.

    Article  CAS  PubMed  Google Scholar 

  35. Hess-Stumpp H, Bracker TU, Henderson D, Politz O . MS-275, a potent orally available inhibitor of histone deacetylases—the development of an anticancer agent. Int J Biochem Cell Biol 2007; 39: 1388–1405.

    Article  CAS  PubMed  Google Scholar 

  36. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  37. Kojima K, Konopleva M, Tsao T, Nakakuma H, Andreeff M . Concomitant inhibition of Mdm2-p53 interaction and aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 2008; 112: 2886–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Youn H-D, Sun L, Prywes R, Liu JO . Apoptosis of T Cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 1999; 286: 790–793.

    CAS  PubMed  Google Scholar 

  39. Youn H-D, Liu JO . Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000; 13: 85–94.

    Article  CAS  PubMed  Google Scholar 

  40. Inoue S, Riley J, Gant TW, Dyer MJS, Cohen GM . Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 2007; 21: 1773–1782.

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Fiskus W, Eaton K, Fernandez P, Wang Y, Rao R et al. Cotreatment with BCL-2 antagonist sensitizes cutaneous T-cell lymphoma to lethal action of HDAC7-Nur77-based mechanism. Blood 2009; 113: 4038–4048.

    Article  CAS  PubMed  Google Scholar 

  42. Dequiedt F, Kasler H, Fischle W, Kiermer V, Weinstein M, Herndier BG et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 2003; 18: 687–698.

    Article  CAS  PubMed  Google Scholar 

  43. Scott FL, Fuchs GJ, Boyd SE, Denault J-B, Hawkins CJ, Dequiedt F et al. Caspase-8 cleaves histone deacetylase 7 and abolishes its transcription repressor function. J Biol Chem 2008; 283: 19499–19510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang S-A, Na H, Kang H-J, Kim S-H, Lee M-H, Lee M-O . Regulation of Nur77 protein turnover through acetylation and deacetylation induced by p300 and HDAC1. Biochem Pharmacol 2010; 80: 867–873.

    Article  CAS  PubMed  Google Scholar 

  45. Ulveling D, Francastel C, Hubé F . When one is better than two: RNA with dual functions. Biochimie 2011; 93: 633–644.

    Article  CAS  PubMed  Google Scholar 

  46. Colley SM, Leedman PJ . Steroid receptor RNA activator – a nuclear receptor coregulator with multiple partners: Insights and challenges. Biochimie 2011; 93: 1966–1972.

    Article  CAS  PubMed  Google Scholar 

  47. Gajjar M, Candeias Marco M, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following dna damage. Cancer Cell 2012; 21: 25–35.

    Article  CAS  PubMed  Google Scholar 

  48. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al. p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 2008; 10: 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  49. Williams GT, Lau LF . Activation of the inducible orphan receptor gene nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Mol Cell Biol 1993; 13: 6124–6136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica 2004; 89: 419–426.

    CAS  PubMed  Google Scholar 

  51. Lin B, Kolluri SK, Lin F, Liu W, Han Y-H, Cao X et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527–540.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (P01 CA055164, P30 CA016672) (to MA), a Baylor College of Medicine (BCM) and the University of Texas M. D. Anderson Cancer Center collaboration grant from the BCM Dan L. Duncan Cancer Center (to OC and MK), RO1CA111411 (to OC) and Syndax Pharmaceuticals, Inc. We thank Karen C. Dwyer, Wendy D. Schober and Jared K. Burks from the CCSG Flow Cytometry and Cellular Imaging Core Facility for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Andreeff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Ruvolo, V., McQueen, T. et al. HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 27, 1358–1368 (2013). https://doi.org/10.1038/leu.2012.366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.366

Keywords

This article is cited by

Search

Quick links