Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation

Abstract

Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tan Y, Sangfelt O, Spruck C . The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett 2008; 271: 1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 2009; 113: 3918–3924.

    Article  CAS  PubMed  Google Scholar 

  3. Ben Abdelali R, Asnafi V, Leguay T, Boissel N, Buzyn A, Chevallier P et al. Pediatric-inspired intensified therapy of adult T-ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood 2011; 118: 5099–5107.

    Article  CAS  PubMed  Google Scholar 

  4. Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006; 108: 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  5. Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010; 24: 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  6. Kox C, Zimmermann M, Stanulla M, Leible S, Schrappe M, Ludwig WD et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia 2010; 24: 2005–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 2007; 67: 5611–5616.

    Article  CAS  PubMed  Google Scholar 

  8. Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 2009; 145: 198–206.

    Article  CAS  PubMed  Google Scholar 

  9. Zuurbier L, Homminga I, Calvert V, te Winkel ML, Buijs-Gladdines JG, Kooi C et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia Dec 2010; 24: 2014–2022.

    Article  CAS  Google Scholar 

  10. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217.

    CAS  PubMed  Google Scholar 

  11. Annino L, Vegna ML, Camera A, Specchia G, Visani G, Fioritoni G et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 2002; 99: 863–871.

    Article  CAS  PubMed  Google Scholar 

  12. Kaspers GJ, Wijnands JJ, Hartmann R, Huismans L, Loonen AH, Stackelberg A et al. Immunophenotypic cell lineage and in vitro cellular drug resistance in childhood relapsed acute lymphoblastic leukaemia. Eur J Cancer 2005; 41: 1300–1303.

    Article  CAS  PubMed  Google Scholar 

  13. Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia-implications for treatment of infants. Leukemia 1998; 12: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  14. Distelhorst CW . Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6–19.

    Article  CAS  PubMed  Google Scholar 

  15. Yudt MR, Cidlowski JA . The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 2002; 16: 1719–1726.

    Article  CAS  PubMed  Google Scholar 

  16. Greenstein S, Ghias K, Krett NL, Rosen ST . Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clinical cancer research: an official journal of the American Association for Cancer Research 2002; 8: 1681–1694.

    CAS  Google Scholar 

  17. van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell 2006; 23: 37–48.

    Article  CAS  PubMed  Google Scholar 

  18. Marshall GM, Bell JL, Koach J, Tan O, Kim P, Malyukova A et al. TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. Oncogene 2010; 29: 6172–6183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bornhauser BC, Bonapace L, Lindholm D, Martinez R, Cario G, Schrappe M et al. Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood 2007; 110: 2084–2091.

    Article  CAS  PubMed  Google Scholar 

  20. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 2004; 103: 3905–3914.

    Article  CAS  PubMed  Google Scholar 

  21. Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB . Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005; 105: 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  22. Bachmann PS, Gorman R, Papa RA, Bardell JE, Ford J, Kees UR et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res 2007; 67: 4482–4490.

    Article  CAS  PubMed  Google Scholar 

  23. Strohmaier H, Spruck CH, Kaiser P, Won K-A, Sangfelt O, Reed SI . Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 2001; 413: 316–322.

    Article  CAS  PubMed  Google Scholar 

  24. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294: 173–177.

    Article  CAS  PubMed  Google Scholar 

  25. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG . The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8: 25–33.

    Article  CAS  PubMed  Google Scholar 

  26. Galliher-Beckley AJ, Williams JG, Collins JB, Cidlowski JA . Glycogen synthase kinase 3beta-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol Cell Biol 2008; 28: 7309–7322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welcker M, Clurman BE . Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div 2007; 2: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Renner K, Ausserlechner MJ, Kofler R . A conceptual view on glucocorticoid-lnduced apoptosis, cell cycle arrest and glucocorticoid resistance in lymphoblastic leukemia. Curr Mol Med 2003; 3: 707–717.

    Article  CAS  PubMed  Google Scholar 

  29. Frankfurt O, Rosen ST . Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr Opin Oncol 2004; 16: 553–563.

    Article  CAS  PubMed  Google Scholar 

  30. Belikov S, Gelius B, Wrange O . Hormone-induced nucleosome positioning in the MMTV promoter is reversible. EMBO J 2001; 20: 2802–2811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsumoto A, Onoyama I, Sunabori T, Kageyama R, Okano H, Nakayama KI . Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells. J Biol Chem 2011; 286: 13754–13764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alboran IM, Nakayama K et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 2007; 204: 2875–2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa Y, Hosogane M, Okuyama R, Aoyama S, Onoyama I, Nakayama KI et al. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch. Oncogene, e-pub ahead of print, 4 June 2012; doi:10.1038/onc.2012.213.

    Article  PubMed  Google Scholar 

  35. Akhoondi S, Lindstrom L, Widschwendter M, Corcoran M, Bergh J, Spruck C et al. Inactivation of FBXW7/hCDC4-beta expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res 12: R105.

  36. Reichardt HM, Umland T, Bauer A, Kretz O, Schutz G . Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 2000; 20: 9009–9017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pazirandeh A, Xue Y, Okret S, Jondal M . Glucocorticoid resistance in thymocytes from mice expressing a T cell receptor transgene. Biochem Biophys Res Commun 2000; 276: 189–196.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt S, Irving JA, Minto L, Matheson E, Nicholson L, Ploner A et al. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor. FASEB J 2006; 20: 2600–2602.

    Article  CAS  PubMed  Google Scholar 

  39. Wallace AD, Cidlowski JA . Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 2001; 276: 42714–42721.

    Article  CAS  PubMed  Google Scholar 

  40. Miller AL, Komak S, Webb MS, Leiter EH, Thompson EB . Gene expression profiling of leukemic cells and primary thymocytes predicts a signature for apoptotic sensitivity to glucocorticoids. Cancer Cell Int 2007; 7: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T et al. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003; 81: 543–555.

    Article  CAS  PubMed  Google Scholar 

  42. Planey SL, Abrams MT, Robertson NM, Litwack G . Role of apical caspases and glucocorticoid-regulated genes in glucocorticoid-induced apoptosis of pre-B leukemic cells. Cancer Res 2003; 63: 172–178.

    CAS  PubMed  Google Scholar 

  43. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW . Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 2003; 278: 23861–23867.

    Article  CAS  PubMed  Google Scholar 

  44. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005; 106: 4131–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao YN, Guo X, Ma ZG, Gu L, Ge J, Li Q . Pro-apoptotic protein BIM in apoptosis of glucocorticoid-sensitive and -resistant acute lymphoblastic leukemia CEM cells. Med Oncol 2011; 28: 1609–1617.

    Article  CAS  PubMed  Google Scholar 

  46. Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV . Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 2010; 24: 1136–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 2009; 284: 26591–26602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Egle A, Harris AW, Bouillet P, Cory S . Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 2004; 101: 6164–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arabi A, Ullah K, Branca RM, Johansson J, Bandarra D, Haneklaus M et al. Proteomic screen reveals Fbw7 as a modulator of the NF-kappaB pathway. Nat Commun 2012; 3: 976.

    Article  PubMed  Google Scholar 

  50. Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O’Connor O et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol Apr 14: 375–385.

  51. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471: 104–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471: 110–114.

Download references

Acknowledgements

We thank Bert Vogelstein (Johns Hopkins University, Baltimore, MD) for kindly providing FBXW7-deficient HCT 116 cells and parental control cells. Children’s Cancer Institute Australia for Medical Research is affiliated with the Sydney Children’s Hospital and the University of New South Wales. This study was supported by grants from National Health and Medical Research Council of Australia (G.M., M.N., M.H.), Cancer Council New South Wales (G.M., M.N., M.H.), Steven Walter Children’s Cancer Foundation (G.M.), Cancer Institute New South Wales (G.M., M.N., M.H.), and Leukemia Foundation (G.M.), Swedish Society for Medical Research (A.M.), the Swedish Cancer Foundation, the Swedish Research Council (O.S.), the Swedish Children’s Cancer Foundation and Karolinska Institute Foundations (O.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Malyukova or G M Marshall.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyukova, A., Brown, S., Papa, R. et al. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia 27, 1053–1062 (2013). https://doi.org/10.1038/leu.2012.361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.361

Keywords

This article is cited by

Search

Quick links