Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of HOX genes in normal hematopoiesis and acute leukemia

Abstract

The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Frohling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    CAS  PubMed  Google Scholar 

  2. Smith A, Howell D, Patmore R, Jack A, Roman E . Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer 2011; 105: 1684–1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Estey E, Döhner H . Acute myeloid leukaemia. The Lancet 2006; 368: 1894–1907.

    Google Scholar 

  4. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    PubMed  PubMed Central  Google Scholar 

  5. Dohner K, Dohner H . Molecular characterization of acute myeloid leukemia. Haematologica 2008; 93: 976–982.

    Article  PubMed  Google Scholar 

  6. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    CAS  PubMed  Google Scholar 

  7. Betz BL, Hess JL . Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med 2010; 134: 1427–1433.

    PubMed  Google Scholar 

  8. Hox Garcia-FernandezJ . ParaHox, ProtoHox: facts and guesses. Heredity 2004; 94: 145–152.

    Google Scholar 

  9. Shah N, Sukumar S . The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10: 361–371.

    CAS  PubMed  Google Scholar 

  10. Abramovich C, Pineault N, Ohta H, Humphries RK . Hox Genes: from leukemia to hematopoietic stem cell expansion. Ann N Y Acad Sci 2005; 1044: 109–116.

    CAS  PubMed  Google Scholar 

  11. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A et al. Zebrafish hox clusters and vertebrate genome evolution. Science 1998; 282: 1711–1714.

    CAS  PubMed  Google Scholar 

  12. Rice KL, Licht JD . HOX deregulation in acute myeloid leukemia. J Clin Invest 2007; 117: 865–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. He H, Hua X, Yan J . Epigenetic regulations in hematopoietic Hox code. Oncogene 2011; 30: 379–388.

    CAS  PubMed  Google Scholar 

  14. Knittel T, Kessel M, Kim MH, Gruss P . A conserved enhancer of the human and murine Hoxa-7 gene specifies the anterior boundary of expression during embryonal development. Development 1995; 121: 1077–1088.

    CAS  PubMed  Google Scholar 

  15. Phelan M, Rambaldi I, Featherstone M . Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol 1995; 15: 3989–3997.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moens CB, Selleri L . Hox cofactors in vertebrate development. Dev Biol 2006; 291: 193–206.

    CAS  PubMed  Google Scholar 

  17. Mann RS, Lelli KM, Joshi R, Hox Specificity: Unique Roles for Cofactors and CollaboratorsChapter 3 Current Topics in Developmental Biology, 2009. Academic Press.

    Google Scholar 

  18. Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G . Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 2001; 21: 224–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dimartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 2001; 98: 618–626.

    CAS  PubMed  Google Scholar 

  20. Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 2004; 23: 450–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pillay LM, Forrester AM, Erickson T, Berman JN, Waskiewicz AJ . The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. Dev Biol 2010; 340: 306–317.

    CAS  PubMed  Google Scholar 

  22. Shen WF, Chang CP, Rozenfeld S, Sauvageau G, Humphries RK, Lu M et al. Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res 1996; 24: 898–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen W, Montgomery J, Rozenfeld S, Moskow J, Lawrence H, Buchberg AC et al. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 1997; 17: 6448–6458.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giampaolo A, Sterpetti P, Bulgarini D, Samoggia P, Pelosi E, Valtieri M et al. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 1994; 84: 3637–3647.

    CAS  PubMed  Google Scholar 

  25. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698.

    CAS  PubMed  Google Scholar 

  26. Pineault N, Helgason CD, Lawrence HJ, Humphries RK . Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57.

    CAS  PubMed  Google Scholar 

  27. Grier DG, Thompson A, Kwasniewska A, Mcgonigle GJ, Halliday HL, Lappin TR . The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205: 154–171.

    CAS  PubMed  Google Scholar 

  28. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–12227.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJT, Plum J et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17: 1157–1163.

    CAS  PubMed  Google Scholar 

  30. Crooks GM, Fuller J, Petersen D, Izadi P, Malik P, Pattengale PK et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999; 94: 519–528.

    CAS  PubMed  Google Scholar 

  31. Fuller JF, Mcadara J, Yaron Y, Sakaguchi M, Fraser JK, Gasson JC . Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage commitment and maturation. Blood 1999; 93: 3391–3400.

    CAS  PubMed  Google Scholar 

  32. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML . Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004; 103: 3192–3199.

    CAS  PubMed  Google Scholar 

  33. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia–associatedHoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    CAS  PubMed  Google Scholar 

  35. Magnusson M, Brun ACM, Lawrence HJ, Karlsson S . Hoxa9/hoxb3/hoxb4 compound null mice display severe hematopoietic defects. Exp Hematol 2007a; 35: 1421–1428.

    CAS  PubMed  Google Scholar 

  36. Buske C, Feuring-Buske M, Antonchuk J, Rosten P, Hogge DE, Eaves CJ et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 2001; 97: 2286–2292.

    CAS  PubMed  Google Scholar 

  37. Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997; 6: 13–22.

    CAS  PubMed  Google Scholar 

  38. Ko KH, Kwan Lam QL, Zhang M, Yen Wong CK, Chun LoCK, Kahmeyer-Gabbe M et al. Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow. Exp Hematol 2007; 35: 465–475.

    CAS  PubMed  Google Scholar 

  39. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    CAS  PubMed  Google Scholar 

  40. Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003; 9: 1423–1427.

    CAS  PubMed  Google Scholar 

  41. Brun ACM, Björnsson JM, Magnusson M, Larsson N, Leveén P, Ehinger M et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 2004; 103: 4126–4133.

    CAS  PubMed  Google Scholar 

  42. Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ et al. Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood 2006; 108: 116–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bjornsson JM, Larsson N, Brun ACM, Magnusson M, Andersson E, Lundstrom P et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003; 23: 3872–3883.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D et al. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 2005; 105: 1456–1466.

    CAS  PubMed  Google Scholar 

  45. Kappen C . Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am J Hematol 2000; 65: 111–118.

    CAS  PubMed  Google Scholar 

  46. Takeshita K, Bollekens JA, Hijiya N, Ratajczak M, Ruddle FH, Gewirtz AM . A homeobox gene of the antennapedia class is required for human adult erythropoiesis. Proc Natl Acad Sci USA 1993; 90: 3535–3538.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G . The retroviral transduction of HOXC4 into human CD34+ cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 2000; 28: 569–574.

    CAS  PubMed  Google Scholar 

  48. Shimamoto T, Tang Y, Naot Y, Nardi M, Brulet P, Bieberich CJ et al. Hematopoietic progenitor cell abnormalities in Hoxc-8 null mutant mice. J Exp Zool 1999; 283: 186–193.

    CAS  PubMed  Google Scholar 

  49. Krosl J, Beslu N, Mayotte N, Humphries RK, Sauvageau G . The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 2003; 18: 561–571.

    CAS  PubMed  Google Scholar 

  50. Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G . Sustained in vitro trigger of self-renewal divisions in Hoxb4(hi)Pbx1(lo) hematopoietic stem cells. Exp Hematol 2007; 35: 802–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Beuchle D, Struhl G, Muller J . Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 2001; 128: 993–1004.

    CAS  PubMed  Google Scholar 

  52. Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ . An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 2004; 14: 2063–2069.

    CAS  PubMed  Google Scholar 

  53. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P . Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell stem cell 2007; 1: 324–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Davidson AJ, Zon LI . The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol 2006; 292: 506–518.

    CAS  PubMed  Google Scholar 

  55. Wang Y, Yabuuchi A, Mckinney-Freeman S, Ducharme DMK, Ray MK, Chawengsaksophak K et al. Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc Natl Acad Sci USA 2008; 105: 7756–7761.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koo S, Huntly BJ, Wang Y, Chen J, Brumme K, Ball B et al. Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica 2010; 95: 1642–1650.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Scholl C, Bansal D, Dohner K, Eiwen K, Huntly BJP, Lee BH et al. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 2007; 117: 1037–1048.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rawat VPS, Thoene S, Naidu VM, Arseni N, Heilmeier B, Metzeler K et al. Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. Blood 2008; 111: 309–319.

    CAS  PubMed  Google Scholar 

  59. Riedt T, Ebinger M, Salih HR, Tomiuk J, Handgretinger R, Kanz L et al. Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood 2009; 113: 4049–4051.

    CAS  PubMed  Google Scholar 

  60. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, Van Den Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu YL, Passegué E, Fong S, Largman C, Lawrence HJ . Evidence that the Pim1 kinase gene is a direct target of HOXA9. Blood 2007; 109: 4732–4738.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nagel S, Venturini L, Marquez V, Meyer C, Kaufmann M, Scherr M et al. Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines. Mol Cancer 2010; 9: 151.

    PubMed  PubMed Central  Google Scholar 

  63. Bei L, Lu Y, Eklund EA . HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation. J Biol Chem 2005; 280: 12359–12370.

    CAS  PubMed  Google Scholar 

  64. Gwin K, Frank E, Bossou A, Medina KL . Hoxa9 Regulates Flt3 in Lymphohematopoietic Progenitors. J Immunol 2010; 185: 6572–6583.

    CAS  PubMed  Google Scholar 

  65. Hu YL, Fong S, Ferrell C, Largman C, Shen WF . HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol 2009; 29: 5181–5192.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C et al. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 2012; 119: 388–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takeda A, Goolsby C, Yaseen NR . NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006; 66: 6628–6637.

    CAS  PubMed  Google Scholar 

  69. Magnusson M, Brun ACM, Miyake N, Larsson J, Ehinger M, Bjornsson JM et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007; 109: 3687–3696.

    CAS  PubMed  Google Scholar 

  70. Bei L, Lu Y, Bellis SL, Zhou W, Horvath E, Eklund EA . Identification of a HoxA10 activation domain necessary for transcription of the gene encoding β3 integrin during myeloid differentiation. J Biol Chem 2007; 282: 16846–16859.

    CAS  PubMed  Google Scholar 

  71. Wang H, Lu Y, Huang W, Papoutsakis ET, Fuhrken P, Eklund EA . HoxA10 activates transcription of the gene encoding mitogen-activated protein kinase phosphatase 2 (Mkp2) in myeloid cells. J Biol Chem 2007; 282: 16164–16176.

    CAS  PubMed  Google Scholar 

  72. Bei L, Huang W, Wang H, Shah C, Horvath E, Eklund E . HoxA10 activates CDX4 transcription and Cdx4 activates HOXA10 transcription in myeloid cells. J Biol Chem 2011; 286: 19047–19064.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bromleigh VC, Freedman LP . p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev 2000; 14: 2581–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Eklund EA, Jalava A, Kakar R . Tyrosine phosphorylation of HoxA10 decreases DNA binding and transcriptional repression during interferon γ-induced differentiation of myeloid leukemia cell lines. J Biol Chem 2000; 275: 20117–20126.

    CAS  PubMed  Google Scholar 

  75. Palmqvist L, Pineault N, Wasslavik C, Humphries RK . Candidate genes for expansion and transformation of hematopoietic stem cells by NUP98-HOX fusion genes. PLoS ONE 2007; 2: e768.

    PubMed  PubMed Central  Google Scholar 

  76. Lee HM, Zhang H, Schulz V, Tuck DP, Forget BG . Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells. Blood 2010; 116: 720–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan Q, Simpson R . Antisense knockout of HOXB4 blocks 1,25-dihydroxyvitamin D3 inhibition of c-myc expression. J Endocrinol 2001; 169: 153–159.

    CAS  PubMed  Google Scholar 

  78. Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem 2004; 279: 24986–24993.

    CAS  PubMed  Google Scholar 

  79. Krosl J, Sauvageau G . AP-1 complex is effector of Hox-induced cellular proliferation and transformation. Oncogene 2000; 19: 5134–5141.

    CAS  PubMed  Google Scholar 

  80. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB et al. Pim-1 Kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 1998; 2: 417–425.

    CAS  PubMed  Google Scholar 

  81. Shah CA, Bei L, Wang H, Platanias LC, Eklund EA . HoxA10 protein regulates transcription of gene encoding fibroblast growth factor 2 (FGF2) in myeloid cells. J Biol Chem 2012; 287: 18230–18248.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shah CA, Wang H, Bei L, Platanias LC, Eklund EA . HoxA10 Regulates Transcription of the Gene Encoding Transforming Growth Factor β2 (TGFβ2) in Myeloid Cells. J Biol Chem 2011; 286: 3161–3176.

    CAS  PubMed  Google Scholar 

  83. Oshima M, Endoh M, Endo TA, Toyoda T, Nakajima-Takagi Y, Sugiyama F et al. Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood 2011; 117: e142–e150.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fan R, Bonde S, Gao P, Sotomayor B, Chen C, Mouw T et al. Dynamic HoxB4 regulatory network during embryonic stem cell differentiation to hematopoietic cells. Blood 2012; 119: e139–e147.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158.

    CAS  PubMed  Google Scholar 

  86. Borrow J, Shearman AM, Stanton VP, Becher R, Collins T, Williams AJ et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167.

    CAS  PubMed  Google Scholar 

  87. Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I et al. Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias withHOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 2002; 99: 1428–1433.

    CAS  PubMed  Google Scholar 

  88. Suzuki A, Ito Y, Sashida G, Honda S, Katagiri T, Fujino T et al. t(7;11)(p15;p15) chronic myeloid leukaemia developed into blastic transformation showing a novel NUP98/HOXA11 fusion. Br J Haematol 2002; 116: 170–172.

    CAS  PubMed  Google Scholar 

  89. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58: 4269–4273.

    CAS  PubMed  Google Scholar 

  90. Taketani T, Taki T, Shibuya N, Ito E, Kitazawa J, Terui K et al. The HOXD11 gene is fused to the NUP98 gene in acute myeloid leukemia with t(2;11)(q31;p15). Cancer Res 2002; 62: 33–37.

    CAS  PubMed  Google Scholar 

  91. Taketani T, Taki T, Shibuya N, Kikuchi A, Hanada R, Hayashi Y . Novel NUP98-HOXC11 fusion gene resulted from a chromosomal break within exon 1 of HOXC11 in acute myeloid leukemia with t(11;12)(p15;q13). Cancer Res 2002; 62: 4571–4574.

    CAS  PubMed  Google Scholar 

  92. Pineault N, Abramovich C, Ohta H, Humphries RK . Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol Cell Biol 2004; 24: 1907–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palmqvist L, Argiropoulos B, Pineault N, Abramovich C, Sly LM, Krystal G et al. The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. Blood 2006; 108: 1030–1036.

    CAS  PubMed  Google Scholar 

  94. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE et al. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 2003; 101: 4529–4538.

    CAS  PubMed  Google Scholar 

  96. Tosic N, Stojiljkovic M, Colovic N, Colovic M, Pavlovic S . Acute myeloid leukemia with NUP98-HOXC13 fusion and FLT3 internal tandem duplication mutation: case report and literature review. Cancer Genet Cytogenet 2009; 193: 98–103.

    CAS  PubMed  Google Scholar 

  97. Slany RK . The molecular biology of mixed lineage leukemia. Haematol-Hematol J 2009; 94: 984–993.

    CAS  Google Scholar 

  98. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    CAS  PubMed  Google Scholar 

  99. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  100. Abdul-Nabi AM, Yassin ER, Varghese N, Deshmukh H, Yaseen NR . In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML. PLoS ONE 2010; 5: e12464.

    PubMed  PubMed Central  Google Scholar 

  101. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bansal D, Scholl C, Frohling S, Mcdowell E, Lee BH, Dohner K et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA 2006; 103: 16924–16929.

    PubMed  PubMed Central  Google Scholar 

  103. Bansal D, Scholl C, Fröhling S, Mcdowell E, Lee BH, Döhner K et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA 2006; 103: 16924–16929.

    PubMed  PubMed Central  Google Scholar 

  104. Rau R, Brown P . Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol 2009; 27: 171–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    CAS  PubMed  Google Scholar 

  106. Thiede C, Koch S, Creutzig E, Steudel C, Lllmer T, Schiach M et al. Prevelance and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107: 4011–4020.

    CAS  PubMed  Google Scholar 

  107. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    CAS  PubMed  Google Scholar 

  108. Brown P, Mcintyre E, Rau R, Meshinchi S, Lacayo N, Dahl G et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 2007; 110: 979–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hollink IHIM, Zwaan CM, Zimmermann M, Arentsen-Peters TCJM, Pieters R, Cloos J et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262–270.

    CAS  PubMed  Google Scholar 

  110. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23: 1731–1743.

    CAS  PubMed  Google Scholar 

  111. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 2007; 21: 2000–2009.

    CAS  PubMed  Google Scholar 

  112. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    CAS  PubMed  Google Scholar 

  114. Rozovskaia T, Feinstein E, Mor O, Foa R, Blechman J, Nakamura T et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4: 11) abnormality. Oncogene 2001; 20: 874–878.

    CAS  PubMed  Google Scholar 

  115. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 Leukemias. Cancer Cell 2008; 14: 355–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zangrando A, Dell’orto MC, Kronnie GT, Basso G . MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genomics 2009; 2: 36.

    PubMed  PubMed Central  Google Scholar 

  117. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    CAS  PubMed  Google Scholar 

  118. Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    CAS  PubMed  Google Scholar 

  119. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    CAS  PubMed  Google Scholar 

  120. Thoene S, Rawat VPS, Heilmeier B, Hoster E, Metzeler KH, Herold T et al. The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia. Leukemia 2009; 23: 649–655.

    CAS  PubMed  Google Scholar 

  121. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    CAS  PubMed  Google Scholar 

  122. Andreeff M, Ruvolo V, Gadgil S, Zeng C, Coombes K, Chen W et al. HOX expression patterns identify a common signature for favorable AML. Leukemia 2008; 22: 2041–2047.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zangenberg M, Grubach L, Aggerholm A, Silkjaer T, Juhl-Christensen C, Nyvold CG et al. The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML. Eur J Haematol 2009; 83: 439–448.

    CAS  PubMed  Google Scholar 

  124. Daniels TR, Neacato II, Rodriguez JA, Pandha HS, Morgan R, Penichet ML . Disruption of HOX activity leads to cell death that can be enhanced by the interference of iron uptake in malignant B cells. Leukemia 2010; 24: 1555–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Morgan R, Pirard P, Shears L, Sohal S, Pettengell R, Pandha H . Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res 2007; 67: 5806–5813.

    CAS  PubMed  Google Scholar 

  126. Plowright L, Harrington KJ, Pandha HS, Morgan R . HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer 2009; 100: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Shears L, Plowright L, Harrington K, Pandha H, Morgan R . Disrupting the interaction between HOX and PBX causes necrotic and apoptotic cell death in the renal cancer lines CaKi-2 and 769-P. J Urol 2008; 180: N2196–N2201.

    Google Scholar 

  128. Morgan R, Plowright L, Harrington K, Michael A, Pandha H . Targeting HOX and PBX transcription factors in ovarian cancer. BMC Cancer 2010; 10: 89.

    PubMed  PubMed Central  Google Scholar 

  129. Espinosa AV, Shinohara M, Porchia LM, Chung YJ, Mccarty S, Saji M et al. Regulator of calcineurin 1 modulates cancer cell migration in vitro. Clin Exp Metastasis 2009; 26: 517–526.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RA Alharbi gratefully acknowledges the support of Albaha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Morgan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alharbi, R., Pettengell, R., Pandha, H. et al. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 27, 1000–1008 (2013). https://doi.org/10.1038/leu.2012.356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.356

Keywords

This article is cited by

Search

Quick links