Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo

Abstract

Internal tandem duplications (ITDs) in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia (AML). We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knockdown of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low-density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  2. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  3. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  4. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  PubMed  Google Scholar 

  5. Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W . Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res 2003; 9: 2140–2150.

    CAS  PubMed  Google Scholar 

  6. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H et al. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 2003; 278: 32892–32898.

    Article  CAS  PubMed  Google Scholar 

  7. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  8. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  9. Pratz KW, Levis MJ . Bench to bedside targeting of FLT3 in acute leukemia. Curr Drug Targets 11: 781–789.

  10. Neel BG, Gu H, Pao L . The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003; 28: 284–293.

    Article  CAS  PubMed  Google Scholar 

  11. Lai LA, Zhao C, Zhang EE, Feng. GS . Protein Phosphatases vol. 5. Springer-Verlag: Berlin Heidelberg, 2004, 275–299pp.

    Book  Google Scholar 

  12. Lu W, Gong D, Bar-Sagi D, Cole PA . Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell 2001; 8: 759–769.

    Article  CAS  PubMed  Google Scholar 

  13. Qu CK, Yu WM, Azzarelli B, Cooper S, Broxmeyer HE, Feng GS . Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol 1998; 18: 6075–6082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    Article  CAS  PubMed  Google Scholar 

  15. Loh ML, Reynolds MG, Vattikuti S, Gerbing RB, Alonzo TA, Carlson E et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia 2004; 18: 1831–1834.

    Article  CAS  PubMed  Google Scholar 

  16. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 2004; 64: 8816–8820.

    Article  CAS  PubMed  Google Scholar 

  17. Tartaglia M, Martinelli S, Iavarone I, Cazzaniga G, Spinelli M, Giarin E et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol 2005; 129: 333–339.

    Article  CAS  PubMed  Google Scholar 

  18. Loh ML, Martinelli S, Cordeddu V, Reynolds MG, Vattikuti S, Lee CM et al. Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 2005; 29: 459–462.

    Article  CAS  PubMed  Google Scholar 

  19. Xu R, Yu Y, Zheng S, Zhao X, Dong Q, He Z et al. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 2005; 106: 3142–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qu CK, Shi ZQ, Shen R, Tsai FY, Orkin SH, Feng GS . A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol Cell Biol 1997; 17: 5499–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heiss E, Masson K, Sundberg C, Pedersen M, Sun J, Bengtsson S et al. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood 2006; 108: 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  22. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  23. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195.

    Article  CAS  PubMed  Google Scholar 

  24. Choudhary C, Muller-Tidow C, Berdel WE, Serve H . Signal transduction of oncogenic Flt3. Int J Hematol 2005; 82: 93–99.

    Article  CAS  PubMed  Google Scholar 

  25. Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B . Ueker A, et al. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 2007; 110: 370–374.

    Article  CAS  PubMed  Google Scholar 

  26. Rocnik JL, Okabe R, Yu JC, Lee BH, Giese N, Schenkein DP et al. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood 2006; 108: 1339–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Wen R, Yang S, Schuman J, Zhang EE, Yi T et al. Identification of Shp-2 as a Stat5A phosphatase. J Biol Chem 2003; 278: 16520–16527.

    Article  CAS  PubMed  Google Scholar 

  28. Yu CL, Jin YJ, Burakoff SJ . Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation. J Biol Chem 2000; 275: 599–604.

    Article  CAS  PubMed  Google Scholar 

  29. Chan RJ, Johnson SA, Li Y, Yoder MC, Feng GS . A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood 2003; 102: 2074–2080.

    Article  CAS  PubMed  Google Scholar 

  30. Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R et al. Deletion of shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 2007; 27: 6706–6717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19: 629–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Chan RJ, Chen H, Yang Z, He Y, Zhang X et al. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem 2009; 284: 22353–22363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali S, Chen Z, Lebrun JJ, Vogel W, Kharitonenkov A, Kelly PA et al. PTP1D is a positive regulator of the prolactin signal leading to beta-casein promoter activation. EMBO J 1996; 15: 135–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Berchtold S, Volarevic S, Moriggl R, Mercep M, Groner B . Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol Endocrinol (Baltimore, MD 1998; 12: 556–567.

    Article  CAS  Google Scholar 

  35. Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S . Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells. J Biol Chem 2002; 277: 31107–31114.

    Article  CAS  PubMed  Google Scholar 

  36. Ke Y, Lesperance J, Zhang EE, Bard-Chapeau EA, Oshima RG, Muller WJ et al. Conditional deletion of Shp2 in the mammary gland leads to impaired lobulo-alveolar outgrowth and attenuated Stat5 activation. J Biol Chem 2006; 281: 34374–34380.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, Broxmeyer HE . Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun 2000; 277: 195–199.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Broxmeyer HE . p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells. Biochem Biophys Res Commun 1999; 254: 440–445.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S . Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol 1999; 65: 372–380.

    Article  CAS  PubMed  Google Scholar 

  40. Chan RJ, Li Y, Hass MN, Walter A, Voorhorst CS, Shelley WC et al. Shp-2 heterozygous hematopoietic stem cells have deficient repopulating ability due to diminished self-renewal. Exp Hematol 2006; 34: 1230–1239.

    Article  CAS  PubMed  Google Scholar 

  41. Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, Gu S et al. Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood 117: 4253–4261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W et al. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood 2011; 117: 5350–5361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fukuda S, Broxmeyer HE, Pelus LM . Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 2005; 105: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  44. Hartman AD, Wilson-Weekes A, Suvannasankha A, Burgess GS, Phillips CA, Hincher KJ et al. Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and proliferation. Exp Hematol 2006; 34: 1360–1376.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z et al. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 2010; 53: 2482–2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang EE, Chapeau E, Hagihara K, Feng GS . Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci USA 2004; 101: 16064–16069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 2005; 105: 3737–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R . Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 2007; 110: 1612–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    Article  CAS  PubMed  Google Scholar 

  50. Yang Z, Kondo T, Voorhorst CS, Nabinger SC, Ndong L, Yin F et al. Increased c-Jun expression and reduced GATA2 expression promote aberrant monocytic differentiation induced by activating PTPN11 mutants. Mol Cell Biol 2009; 29: 4376–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mongomery DC . Design and Analysis of Experiments 4th edn. John Wiley & Sons, Inc., 1997.

    Google Scholar 

  52. Lee BH, Williams IR, Anastasiadou E, Boulton CL, Joseph SW, Amaral SM et al. FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene 2005; 24: 7882–7892.

    Article  CAS  PubMed  Google Scholar 

  53. Beverly LJ, Varmus HE . MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 2009; 28: 1274–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS . Griesinger A, et al. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 2011; 118: 5235–5245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schuringa JJ, Chung KY, Morrone G, Moore MA . Constitutive activation of STAT5A promotes human hematopoietic stem cell self-renewal and erythroid differentiation. J Exp Med 2004; 200: 623–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li L, Modi H, McDonald T, Rossi J, Yee JK, Bhatia R . A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells. Blood 2011; 118: 1504–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muller JP, Schonherr C, Markova B, Bauer R . Stocking C, Bohmer FD. Role of SHP2 for FLT3-dependent proliferation and transformation in 32D cells. Leukemia 2008; 22: 1945–1948.

    Article  CAS  PubMed  Google Scholar 

  58. Masson K, Liu T, Khan R, Sun J, Ronnstrand L . A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival. Br J Haematol 2009; 146: 193–202.

    Article  CAS  PubMed  Google Scholar 

  59. Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R et al. Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood 2007; 109: 1678–1686.

    Article  CAS  PubMed  Google Scholar 

  60. Chan RJ, Feng GS . PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 2007; 109: 862–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feng GS . Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 1999; 253: 47–54.

    Article  CAS  PubMed  Google Scholar 

  62. Leischner H, Albers C, Grundler R, Razumovskaya E, Spiekermann K, Bohlander S et al. SRC is a signaling mediator in FLT3-ITD- but not in FLT3-TKD-positive AML. Blood 2012; 119: 4026–4033.

    Article  CAS  PubMed  Google Scholar 

  63. Okamoto M, Hayakawa F, Miyata Y, Watamoto K, Emi N, Abe A et al. Lyn is an important component of the signal transduction pathway specific to FLT3/ITD and can be a therapeutic target in the treatment of AML with FLT3/ITD. Leukemia 2007; 21: 403–410.

    Article  CAS  PubMed  Google Scholar 

  64. Robinson LJ, Xue J, Corey SJ . Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations. Exp Hematol 2005; 33: 469–479.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Riley Children's Foundation, the Clarian Values Fund for Research (VFR-245, RJC), and the US National Institutes of Health (F31AG031648, SCN; RO1HL082981 and RO1CA134777, RJC; RO1HL075816, RO1HL077177, and RO1CA134777, RK; RO1CA069202 and RO1CA152194, ZYZ). We acknowledge the contribution of Baindu Bayon for generation of the pBCL2L1-L plasmid. We appreciate the helpful discussions and technical assistance from Dr Karen Pollok and Tony Sinn in the Indiana University in vivo Therapeutics Core, from Susan Rice in the Flow Cytometry Core, and from the Indiana Center for Biological Microscopy. We thank Drs Yan Liu, Nadia Carlesso and Merv Yoder for critical reading of the manuscript and gratefully acknowledge the administrative assistance of Linda S Henson.

Author contributions

Sarah C Nabinger and Xingjun Li: designed and performed the research and wrote the manuscript; Baskar Ramdas, Yantao He, Xian Zhang, Lifan Zeng, Briana Richine and Joshua D Bowling: designed and performed the research; Seiji Fukuda, Gen-Sheng Feng and Zhong-Yin Zhang: provided reagent; Shreevrat Goenka and Reuben Kapur: designed the research; Ziyue Liu and Menggang Yu: performed statistical analyses; George E Sandusky: performed pathological analyses; H Scott Boswell: provided primary AML samples; Rebecca J Chan: designed the research and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Chan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabinger, S., Li, X., Ramdas, B. et al. The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia 27, 398–408 (2013). https://doi.org/10.1038/leu.2012.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.308

Keywords

This article is cited by

Search

Quick links