Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma

Abstract

A hallmark of classical Hodgkin lymphoma (cHL) is that the B-cell-derived Hodgkin and Reed–Sternberg (HRS) tumor cells have largely lost the B-cell-typical gene expression program. The factors causing this ‘reprogramming’ of HRS cells are only partly understood. As early B-cell factor 1 (EBF1), a major B-cell transcription factor, is downregulated in HRS cells, we analyzed whether this downregulation contributes to the lost B-cell phenotype and tested the consequences of EBF1 re-expression in cHL cell lines. EBF1 re-expression caused an upregulation of B-cell genes, such as CD19, CD79A and CD79B, although the B-cell genes FOXO1 and PAX5 remained lowly expressed. The re-expression of CD19, CD79A and CD79B occurred largely without demethylation of promoter CpG motifs of these genes. In the cHL cell line L-1236 fitness decreased after EBF1 re-expression. These data show that EBF1 has the ability to reintroduce part of the B-cell signature in cHL cell lines. Loss of EBF1 expression in HRS cells therefore contributes to their lost B-cell phenotype. Notably, in the cHL cell line KM-H2 destructive mutations were found in one allele of EBF1, indicating that genetic lesions may sometimes have a role in impairing EBF1 expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA 1994; 91: 10962–10966.

    Article  Google Scholar 

  2. Müschen M, Rajewsky K, Bräuninger A, Baur AS, Oudejans JJ, Roers A et al. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med 2000; 191: 387–394.

    Article  Google Scholar 

  3. Kanzler H, Küppers R, Hansmann ML, Rajewsky K . Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505.

    Article  CAS  Google Scholar 

  4. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512.

    Article  CAS  Google Scholar 

  5. Watanabe K, Yamashita Y, Nakayama A, Hasegawa Y, Kojima H, Nagasawa T et al. Varied B-cell immunophenotypes of Hodgkin/Reed-Sternberg cells in classic Hodgkin’s disease. Histopathology 2000; 36: 353–361.

    Article  CAS  Google Scholar 

  6. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 2001; 97: 496–501.

    Article  CAS  Google Scholar 

  7. Re D, Muschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res 2001; 61: 2080–2084.

    CAS  PubMed  Google Scholar 

  8. van den Berg A, Visser L, Poppema S . High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma. Am J Pathol 1999; 154: 1685–1691.

    Article  CAS  Google Scholar 

  9. Küppers R, Klein U, Schwering I, Distler V, Bräuninger A, Cattoretti G et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 2003; 111: 529–537.

    Article  Google Scholar 

  10. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.

    Article  CAS  Google Scholar 

  11. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215.

    Article  CAS  Google Scholar 

  12. Renne C, Martin-Subero JI, Eickernjager M, Hansmann ML, Küppers R, Siebert R et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 2006; 169: 655–664.

    Article  CAS  Google Scholar 

  13. Küppers R . The biology of Hodgkin's lymphoma. Nat Rev Cancer 2009; 9: 15–27.

    Article  Google Scholar 

  14. Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 2010; 11: 635–643.

    Article  CAS  Google Scholar 

  15. Pongubala JM, Northrup DL, Lancki DW, Medina KL, Treiber T, Bertolino E et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 2008; 9: 203–215.

    Article  CAS  Google Scholar 

  16. Treiber T, Mandel EM, Pott S, Gyory I, Firner S, Liu ET et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 2010; 32: 714–725.

    Article  CAS  Google Scholar 

  17. Maier H, Ostraat R, Gao H, Fields S, Shinton SA, Medina KL et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 2004; 5: 1069–1077.

    Article  CAS  Google Scholar 

  18. Vilagos B, Hoffmann M, Souabni A, Sun Q, Werner B, Medvedovic J et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J Exp Med 2012; 209: 775–792.

    Article  CAS  Google Scholar 

  19. Györy I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev 2012; 26: 668–682.

    Article  Google Scholar 

  20. Hertel CB, Zhou XG, Hamilton-Dutoit SJ, Junker S . Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene 2002; 21: 4908–4920.

    Article  CAS  Google Scholar 

  21. Krenacs L, Himmelmann AW, Quintanilla-Martinez L, Fest T, Riva A, Wellmann A et al. Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas. Blood 1998; 92: 1308–1316.

    CAS  Google Scholar 

  22. Foss HD, Reusch R, Demel G, Lenz G, Anagnostopoulos I, Hummel M et al. Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood 1999; 94: 3108–3113.

    CAS  PubMed  Google Scholar 

  23. Tiacci E, Döring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; ealy online Sept. 5. PMID: 22955914.

  24. Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 2008; 22: 1587–1594.

    Article  CAS  Google Scholar 

  25. Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK et al. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 2005; 350: 631–640.

    Article  CAS  Google Scholar 

  26. Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2006; 107: 2493–2500.

    Article  CAS  Google Scholar 

  27. Ammerpohl O, Haake A, Pellissery S, Giefing M, Richter J, Balint B et al. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 2012; 26: 185–188.

    Article  CAS  Google Scholar 

  28. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  Google Scholar 

  29. Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C . BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res 2011; 39 (Web Server issue): W551–W556.

    Article  CAS  Google Scholar 

  30. Zandi S, Mansson R, Tsapogas P, Zetterblad J, Bryder D, Sigvardsson M . EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol 2008; 181: 3364–3372.

    Article  CAS  Google Scholar 

  31. Ushmorov A, Ritz O, Hummel M, Leithauser F, Moller P, Stein H et al. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 2004; 104: 3326–3334.

    Article  CAS  Google Scholar 

  32. Lowder M, Unge A, Maraha N, Jansson JK, Swiggett J, Oliver JD . Effect of starvation and the viable-but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Appl Environ Microbiol 2000; 66: 3160–3165.

    Article  CAS  Google Scholar 

  33. Küppers R, Bräuninger A . Reprogramming of the tumour B-cell phenotype in Hodgkin lymphoma. Trends Immunol 2006; 27: 203–205.

    Article  Google Scholar 

  34. Leduc I, Cogne M . Regulatory elements of the mb-1 gene encoding the Ig-alpha component of the human B-cell antigen receptor. Mol Immunol 1996; 33: 1277–12786.

    Article  CAS  Google Scholar 

  35. Akerblad P, Rosberg M, Leanderson T, Sigvardsson M . The B29 (immunoglobulin beta-chain) gene is a genetic target for early B-cell factor. Mol Cell Biol 1999; 19: 392–401.

    Article  CAS  Google Scholar 

  36. Thompson AA, Wood WJ, Gilly MJ, Damore MA, Omori SA, Wall R . The promoter and 5′ flanking sequences controlling human B29 gene expression. Blood 1996; 87: 666–673.

    CAS  PubMed  Google Scholar 

  37. Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C, Tagoh H et al. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 2009; 30: 508–520.

    Article  CAS  Google Scholar 

  38. Hirokawa S, Sato H, Kato I, Kudo A . EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur J Immunol 2003; 33: 1824–1829.

    Article  CAS  Google Scholar 

  39. Yoon SO, Zhang X, Berner P, Blom B, Choi YS . Notch ligands expressed by follicular dendritic cells protect germinal center B cells from apoptosis. J Immunol 2009; 183: 352–358.

    Article  CAS  Google Scholar 

  40. Drexler HG . Recent results on the biology of Hodgkin and Reed-Sternberg cells. I. Biopsy material. Leuk Lymphoma 1992; 8: 283–313.

    Article  CAS  Google Scholar 

  41. Drexler HG . Recent results on the biology of Hodgkin and Reed-Sternberg cells. II. Continuous cell lines. Leuk Lymphoma 1993; 9: 1–25.

    Article  CAS  Google Scholar 

  42. Schaniel C, Pardali E, Sallusto F, Speletas M, Ruedl C, Shimizu T et al. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med 1998; 188: 451–463.

    Article  CAS  Google Scholar 

  43. Maggio EM, Van Den Berg A, Visser L, Diepstra A, Kluiver J, Emmens R et al. Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical Hodgkin lymphomas. Int J Cancer 2002; 99: 665–672.

    Article  CAS  Google Scholar 

  44. Poppema S . Immunobiology and pathophysiology of Hodgkin lymphomas. Hematology Am Soc Hematol Educ Program 2005, 231–238.

    Article  Google Scholar 

  45. Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 2007; 446: 680–684.

    Article  CAS  Google Scholar 

  46. Angel CA, Warford A, Campbell AC, Pringle JH, Lauder I . The immunohistology of Hodgkin’s disease--Reed-Sternberg cells and their variants. J Pathol 1987; 153: 21–30.

    Article  CAS  Google Scholar 

  47. Jarrett RF, Armstrong A, Wilkins BS, Jones DB . Immunohistochemical determination of CD23 expression in Hodgkin’s disease using paraffin sections. J Pathol 1991; 164: 345–346.

    Article  CAS  Google Scholar 

  48. Salama ME, Rajan Mariappan M, Inamdar K, Tripp SR, Perkins SL . The value of CD23 expression as an additional marker in distinguishing mediastinal (thymic) large B-cell lymphoma from Hodgkin lymphoma. Int J Surg Pathol 2010; 18: 121–128.

    Article  Google Scholar 

  49. Rowlands DC, Hansel TT, Crocker J . Immunohistochemical determination of CD23 expression in Hodgkin’s disease using paraffin sections. J Pathol 1990; 160: 239–243.

    Article  CAS  Google Scholar 

  50. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 2000; 1: 59–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gwen Lorenz for expert technical assistance, Klaus Lennartz for cell sorting and Jens Stanelle for helpful discussions. This work was supported by the Deutsche Krebshilfe (108687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Küppers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohle, V., Döring, C., Hansmann, ML. et al. Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma. Leukemia 27, 671–679 (2013). https://doi.org/10.1038/leu.2012.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.280

Keywords

This article is cited by

Search

Quick links