Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC

Abstract

Multiple myeloma (MM) represents the malignant proliferation of terminally differentiated B cells, which, in many cases, is associated with the maintenance of high levels of the oncoprotein c-MYC. Overexpression of the histone methyltransferase MMSET (WHSC1/NSD2), due to t(4;14) chromosomal translocation, promotes the proliferation of MM cells along with global changes in chromatin; nevertheless, the precise mechanisms by which MMSET stimulates neoplasia remain incompletely understood. We found that MMSET enhances the proliferation of MM cells by stimulating the expression of c-MYC at the post-transcriptional level. A microRNA (miRNA) profiling experiment in t(4;14) MM cells identified miR-126* as an MMSET-regulated miRNA predicted to target c-MYC mRNA. We show that miR-126* specifically targets the 3′-untranslated region (3′-UTR) of c-MYC, inhibiting its translation and leading to decreased c-MYC protein levels. Moreover, the expression of this miRNA was sufficient to decrease the proliferation rate of t(4;14) MM cells. Chromatin immunoprecipitation analysis showed that MMSET binds to the miR-126* promoter along with the KAP1 corepressor and histone deacetylases, and is associated with heterochromatic modifications, characterized by increased trimethylation of H3K9 and decreased H3 acetylation, leading to miR-126* repression. Collectively, this study shows a novel mechanism that leads to increased c-MYC levels and enhanced proliferation of t(4;14) MM, and potentially other cancers with high MMSET expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bergsagel PL, Kuehl WM . Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622.

    Article  CAS  PubMed  Google Scholar 

  2. Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM . Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr 2008; 39: 25–31.

    Article  CAS  Google Scholar 

  3. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin Y, Wong K, Calame K . Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 1997; 276: 596–599.

    Article  CAS  PubMed  Google Scholar 

  5. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  6. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J . A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003; 101: 2374–2376.

    Article  CAS  PubMed  Google Scholar 

  7. Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008; 111: 3145–3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JY, Kee HJ, Choe NW, Kim SM, Eom GH, Baek HJ et al. Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity. Mol Cell Biol 2008; 28: 2023–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brito JL, Walker B, Jenner M, Dickens NJ, Brown NJ, Ross FM et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 2009; 94: 78–86.

    Article  CAS  PubMed  Google Scholar 

  10. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 2009; 460: 287–291.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 2011; 117: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 2011; 44: 609–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. IRF4 addiction in multiple myeloma. Nature 2008; 454: 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM et al. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 2003; 23: 9375–9388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salmon P, Trono D . Production and titration of lentiviral vectors. Curr Protoc Hum Genet 2007; Chapter 12: Unit 12.10.

  16. Kim MK, Mason JM, Li CM, Berkofsky-Fessler W, Jiang L, Choubey D et al. A pathologic link between Wilms tumor suppressor gene, WT1, and IFI16. Neoplasia 2008; 10: 69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuchenbauer F, Mah SM, Heuser M, McPherson A, Ruschmann J, Rouhi A et al. Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 2011; 118: 3350–3358.

    Article  CAS  PubMed  Google Scholar 

  18. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Todoerti K, Ronchetti D, Agnelli L, Castellani S, Marelli S, Deliliers GL et al. Transcription repression activity is associated with the type I isoform of the MMSET gene involved in t(4;14) in multiple myeloma. Br J Haematol 2005; 131: 214–218.

    Article  CAS  PubMed  Google Scholar 

  20. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 2003; 17: 1855–1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Geen H, Squazzo SL, Iyengar S, Blahnik K, Rinn JL, Chang HY et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet 2007; 3: e89.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng H, Ivanov AV, Oh HJ, Lau YF, Rauscher FJ . Epigenetic gene silencing by the SRY protein is mediated by a KRAB-O protein that recruits the KAP1 co-repressor machinery. J Biol Chem 2009; 284: 35670–35680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oswald F, Lovec H, Moroy T, Lipp M . E2F-dependent regulation of human MYC: trans-activation by cyclins D1 and A overrides tumour suppressor protein functions. Oncogene 1994; 9: 2029–2036.

    CAS  PubMed  Google Scholar 

  24. Morgan MA, Magnusdottir E, Kuo TC, Tunyaplin C, Harper J, Arnold SJ et al. Blimp-1/Prdm1 alternative promoter usage during mouse development and plasma cell differentiation. Mol Cell Biol 2009; 29: 5813–5827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cobbold LC, Wilson LA, Sawicka K, King HA, Kondrashov AV, Spriggs KA et al. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 2010; 29: 2884–2891.

    Article  CAS  PubMed  Google Scholar 

  26. Shi Y, Frost P, Hoang B, Benavides A, Gera J, Lichtenstein A . IL-6-induced enhancement of c-Myc translation in multiple myeloma cells: critical role of cytoplasmic localization of the rna-binding protein hnRNP A1. J Biol Chem 2011; 286: 67–78.

    Article  CAS  PubMed  Google Scholar 

  27. Garzon R, Calin GA, Croce CM . MicroRNAs in cancer. Annu Rev Med 2009; 60: 167–179.

    Article  CAS  PubMed  Google Scholar 

  28. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona FV et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 2010; 24: 629–637.

    Article  CAS  PubMed  Google Scholar 

  30. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2009; 114: e20–e26.

    Article  CAS  PubMed  Google Scholar 

  31. Wong TS, Man OY, Tsang CM, Tsao SW, Tsang RK, Chan JY et al. MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through downregulating c-Myc expression. J Cancer Res Clin Oncol 2011; 137: 415–422.

    Article  CAS  PubMed  Google Scholar 

  32. Leucci E, Cocco M, Onnis A, De Falco G, van Cleef P, Bellan C et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol 2008; 216: 440–450.

    Article  CAS  PubMed  Google Scholar 

  33. Bhatia S, Kaul D, Varma N . Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia. Mol Cell Biochem 2010; 340: 97–106.

    Article  CAS  PubMed  Google Scholar 

  34. Biasiolo M, Sales G, Lionetti M, Agnelli L, Todoerti K, Bisognin A et al. Impact of host genes and strand selection on miRNA and miRNA* expression. PLoS One 2011; 6: e23854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Chen J . In vitro functional study of miR-126 in leukemia. Methods Mol Biol 2011; 676: 185–195.

    Article  CAS  PubMed  Google Scholar 

  36. Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola HK, Witte ON . Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood 2011; 117: 2157–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grabher C, Payne EM, Johnston AB, Bolli N, Lechman E, Dick JE et al. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 2011; 25: 506–514.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351: 157–164.

    Article  CAS  PubMed  Google Scholar 

  39. Miko E, Margitai Z, Czimmerer Z, Varkonyi I, Dezso B, Lanyi A et al. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett 2011; 585: 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  40. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y . MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011; 6: e16617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rouhi A, Mager DL, Humphries RK, F Kuchenbauer . MiRNAs, epigenetics, and cancer. Mamm Genome 2008; 19: 517–525.

    Article  CAS  PubMed  Google Scholar 

  43. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457–466.

    Article  CAS  PubMed  Google Scholar 

  44. Cammarata G, Augugliaro L, Salemi D, Agueli C, La Rosa M, Dagnino L et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am J Hematol 2010; 85: 331–339.

    CAS  PubMed  Google Scholar 

  45. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Shen Y, Ichikawa H, Antes T, Goldberg GS . Regulation of miRNA expression by Src and contact normalization: effects on nonanchored cell growth and migration. Oncogene 2009; 28: 4272–4283.

    Article  CAS  PubMed  Google Scholar 

  47. Ezponda T, Popovic R, Shah MY, Martinez-Garcia E, Zheng Y, Min DJ et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene 2012.

  48. Alter MD, Hen R . Putting a KAP on transcription and stress. Neuron 2008; 60: 733–735.

    Article  CAS  PubMed  Google Scholar 

  49. Schrump DS . Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin Cancer Res 2009; 15: 3947–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stimson L, La Thangue NB . Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Lett 2009; 280: 177–183.

    Article  CAS  PubMed  Google Scholar 

  51. Ellis L, Atadja PW, Johnstone RW . Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8: 1409–1420.

    Article  CAS  PubMed  Google Scholar 

  52. Mitsiades CS, Davies FE, Laubach JP, Joshua D, San Miguel J, Anderson KC et al. Future directions of next-generation novel therapies, combination approaches, and the development of personalized medicine in myeloma. J Clin Oncol 2011; 29: 1916–1923.

    Article  PubMed  Google Scholar 

  53. Gronbaek K, Hother C, Jones PA . Epigenetic changes in cancer. APMIS 2007; 115: 1039–1059.

    Article  PubMed  Google Scholar 

  54. Frew AJ, Johnstone RW, Bolden JE . Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 2009; 280: 125–133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Louis Staudt for providing the MMSET-shRNA cells and Dr Marcus Peter for helpful suggestions. This work was supported by NIH Grant CA123204, a Leukemia and Lymphoma Specialized Center of Research grant, a NIH Physical Science Oncology Center Grant U54CA143869 and Epizyme, Inc. (to JDL). EM-G was supported by a European Hematology Association Fellowship, RP by NRSA HL099177 and TE by an Alfonso Martin Escudero fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Licht.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, DJ., Ezponda, T., Kim, M. et al. MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC. Leukemia 27, 686–694 (2013). https://doi.org/10.1038/leu.2012.269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.269

Keywords

This article is cited by

Search

Quick links