Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments

Abstract

In chronic lymphocytic leukemia (CLL), the microenvironment influences gene expression patterns; however, knowledge is limited regarding the extent to which methylation changes with time and exposure to specific microenvironments. Using high-resolution 450K arrays, we provide the most comprehensive DNA methylation study of CLL to date, analyzing paired diagnostic/follow-up samples from IGHV-mutated/untreated and IGHV-unmutated/treated patients (n=36) and patient-matched peripheral blood and lymph node samples (n=20). On an unprecedented scale, we revealed 2239 differentially methylated CpG sites between IGHV-mutated and unmutated patients, with the majority of sites positioned outside annotated CpG islands. Intriguingly, CLL prognostic genes (for example, CLLU1, LPL, ZAP70 and NOTCH1), epigenetic regulator (for example, HDAC9, HDAC4 and DNMT3B), B-cell signaling (for example, IBTK) and numerous TGF-β and NF-κB/TNF pathway genes were alternatively methylated between subgroups. Contrary, DNA methylation over time was deemed rather stable with few recurrent changes noted within subgroups. Although a larger number of non-recurrent changes were identified among IGHV-unmutated relative to mutated cases over time, these equated to a low global change. Similarly, few changes were identified between compartment cases. Altogether, we reveal CLL subgroups to display unique methylation profiles and unveil methylation as relatively stable over time and similar within different CLL compartments, implying aberrant methylation as an early leukemogenic event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Herman JG . Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 1999; 9: 359–367.

    Article  CAS  PubMed  Google Scholar 

  2. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  3. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 2007; 129: 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corcoran M, Parker A, Orchard J, Davis Z, Wirtz M, Schmitz OJ et al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 2005; 90: 1078–1088.

    CAS  PubMed  Google Scholar 

  5. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC et al. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 3877–3885.

    Article  CAS  PubMed  Google Scholar 

  6. Strathdee G, Sim A, Parker A, Oscier D, Brown R . Promoter hypermethylation silences expression of the HoxA4 gene and correlates with IgVh mutational status in CLL. Leukemia 2006; 20: 1326–1329.

    Article  CAS  PubMed  Google Scholar 

  7. Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C . CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res 2006; 66: 653–658.

    Article  CAS  PubMed  Google Scholar 

  8. Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS et al. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood 2011; 117: 862–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 2004; 64: 2424–2433.

    Article  CAS  PubMed  Google Scholar 

  10. Rahmatpanah FB, Carstens S, Hooshmand SI, Welsh EC, Sjahputera O, Taylor KH et al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics 2009; 1: 39–61.

    Article  CAS  PubMed  Google Scholar 

  11. Kanduri M, Cahill N, Goransson H, Enstrom C, Ryan F, Isaksson A et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 2010; 115: 296–305.

    Article  CAS  PubMed  Google Scholar 

  12. Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z et al. Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics 2010; 5: 499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsuda S, Yokozaki S, Yoshida H, Kitagishi Y, Shirafuji N, Okumura N . Insulin receptor substrate protein 53 (IRSp53) as a binding partner of antimetastasis molecule NESH, a member of Abelson interactor protein family. Ann Oncol 2008; 19: 1356–1357.

    Article  CAS  PubMed  Google Scholar 

  14. Kleer CG, Zhang Y, Pan Q, van Golen KL, Wu ZF, Livant D et al. WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 2002; 21: 3172–3180.

    Article  CAS  PubMed  Google Scholar 

  15. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smedby KE, Hjalgrim H, Melbye M, Torrang A, Rostgaard K, Munksgaard L et al. Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl Cancer Inst 2005; 97: 199–209.

    Article  PubMed  Google Scholar 

  19. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125: 279–284.

    Article  CAS  PubMed  Google Scholar 

  21. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  22. Mansouri M, Sevov M, Fahlgren E, Tobin G, Jondal M, Osorio L et al. Lipoprotein lipase is differentially expressed in prognostic subsets of chronic lymphocytic leukemia but displays invariably low catalytical activity. Leuk Res 2010; 34: 301–306.

    Article  CAS  PubMed  Google Scholar 

  23. Buhl AM, Jurlander J, Geisler CH, Pedersen LB, Andersen MK, Josefsson P et al. CLLU1 expression levels predict time to initiation of therapy and overall survival in chronic lymphocytic leukemia. Eur J Haematol 2006; 76: 455–464.

    Article  CAS  PubMed  Google Scholar 

  24. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM et al. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010; 116: 2975–2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saborit-Villarroya I, Vaisitti T, Rossi D, D’Arena G, Gaidano G, Malavasi F et al. E2A is a transcriptional regulator of CD38 expression in chronic lymphocytic leukemia. Leukemia 2011; 25: 479–488.

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Quinto I, Chen X, Palmieri C, Rabin RL, Schwartz OM et al. Direct inhibition of Bruton’s tyrosine kinase by IBtk, a Btk-binding protein. Nat Immunol 2001; 2: 939–946.

    Article  CAS  PubMed  Google Scholar 

  29. Witt O, Deubzer HE, Milde T, Oehme I . HDAC family: What are the cancer relevant targets? Cancer Lett 2009; 277: 8–21.

    Article  CAS  PubMed  Google Scholar 

  30. Wang JC, Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C et al. Histone deacetylase in chronic lymphocytic leukemia. Oncology 2011; 81: 325–329.

    Article  CAS  PubMed  Google Scholar 

  31. Kn H, Bassal S, Tikellis C, El-Osta A . Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther 2004; 3: 989–994.

    Article  PubMed  Google Scholar 

  32. Chaperot L, Plumas J, Jacob MC, Bost F, Molens JP, Sotto JJ et al. Functional expression of CD80 and CD86 allows immunogenicity of malignant B cells from non-Hodgkin’s lymphomas. Exp Hematol 1999; 27: 479–488.

    Article  CAS  PubMed  Google Scholar 

  33. Kaderi MA, Kanduri M, Buhl AM, Sevov M, Cahill N, Gunnarsson R et al. LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic lymphocytic leukemia. Haematologica 2011; 96: 1153–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fabris S, Bollati V, Agnelli L, Morabito F, Motta V, Cutrona G et al. Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia. Epigenetics 2011; 6: 188–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pei L, Choi JH, Liu J, Lee EJ, McCarthy B, Wilson JM et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics 2012; 7: 567–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  37. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41: 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chantepie SP, Vaur D, Grunau C, Salaun V, Briand M, Parienti JJ et al. ZAP-70 intron1 DNA methylation status: determination by pyrosequencing in B chronic lymphocytic leukemia. Leuk Res 2010; 34: 800–808.

    Article  CAS  PubMed  Google Scholar 

  39. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno DA, Scrideli CA, Cortez MA, de Paula Queiroz R, Valera ET, da Silva Silveira V et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 2010; 150: 665–673.

    Article  CAS  PubMed  Google Scholar 

  41. Cordingley FT, Bianchi A, Hoffbrand AV, Reittie JE, Heslop HE, Vyakarnam A et al. Tumour necrosis factor as an autocrine tumour growth factor for chronic B-cell malignancies. Lancet 1988; 1: 969–971.

    Article  CAS  PubMed  Google Scholar 

  42. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100: 1215–1219.

    CAS  PubMed  Google Scholar 

  43. Shanafelt TD, Witzig TE, Fink SR, Jenkins RB, Paternoster SF, Smoley SA et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 4634–4641.

    Article  PubMed  Google Scholar 

  44. Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92: 1242–1245.

    Article  PubMed  Google Scholar 

  45. Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U et al. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 2008; 47: 697–711.

    Article  CAS  PubMed  Google Scholar 

  46. Lenschow DJ, Sperling AI, Cooke MP, Freeman G, Rhee L, Decker DC et al. Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor engagement by antigen. J Immunol 1994; 153: 1990–1997.

    CAS  PubMed  Google Scholar 

  47. Nagy B, Lundan T, Larramendy ML, Aalto Y, Zhu Y, Niini T et al. Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma. Br J Haematol 2003; 120: 434–441.

    Article  CAS  PubMed  Google Scholar 

  48. Ban EM, LeBoeuf RD . Suppressin: an endogenous negative regulator of immune cell activation. Immunol Res 1994; 13: 1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Osorio LM, Aguilar-Santelises M . Apoptosis in B-chronic lymphocytic leukaemia. Med Oncol 1998; 15: 234–240.

    Article  CAS  PubMed  Google Scholar 

  50. Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V et al. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 2011; 117: 3816–3825.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nordic Cancer Union, the Swedish Cancer Society, the Swedish Research Council, and the Lion’s Cancer Research Foundation, Uppsala. Methylation profiling was performed by the SNP&SEQ Technology Platform in Uppsala, which is supported by Uppsala University, Uppsala University Hospital, Science for Life Laboratory—Uppsala and the Swedish Research Council (Contracts 80576801 and 70374401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Rosenquist.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill, N., Bergh, AC., Kanduri, M. et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 27, 150–158 (2013). https://doi.org/10.1038/leu.2012.245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.245

Keywords

This article is cited by

Search

Quick links