Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells

Abstract

Multiple myeloma (MM) is characterized by the impaired osteogenic differentiation of human mesenchymal stromal cells (hMSCs). Canonical Wnt signaling is critical for the regulation of bone formation, however, recent evidence suggests that the non-canonical Wnt agonist Wnt5a stimulates human osteoblastogenesis through its co-receptor Ror2. The effects of MM cells on non-canonical Wnt signaling and the effect of the activation of this pathway on MM-induced osteoblast exhaustion are not known and were investigated in this study. We found that the osteogenic differentiation of bone marrow hMSCs toward osteoprogenitor cells (PreOB) significantly increased Ror2 expression, and that MM cells inhibit Ror2 expression by PreOB in co-culture by inhibiting the non-canonical Wnt5a signaling. The activation of the non-canonical Wnt pathway in hMSCs by means of Wnt5a treatment and the overexpression of Wnt5 or Ror2 by lentiviral vectors increased the osteogenic differentiation of hMSCs and blunted the inhibitory effect of MM in co-culture. Consistently, Wnt5a inhibition by specific small interfering RNA reduced the hMSC expression of osteogenic markers. Our findings demonstrate that the Wnt5a/Ror2 pathway is involved in the pathophysiology of MM-induced bone disease and that the activation of the non-canonical Wnt5a/Ror2 pathway in hMSCs increases osteogenic differentiation and may counterbalance the inhibitory effect of MM cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Raje N, Roodman GD . Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 2011; 17: 1278–1286.

    Article  CAS  PubMed  Google Scholar 

  2. Giuliani N, Rizzoli V, Roodman GD . Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 2006; 108: 3992–3996.

    Article  CAS  PubMed  Google Scholar 

  3. Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106: 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  4. Giuliani N, Rizzoli V . Myeloma cells and bone marrow osteoblast interactions: role in the development of osteolytic lesions in multiple myeloma. Leuk Lymphoma 2007; 48: 2323–2329.

    Article  PubMed  Google Scholar 

  5. Westendorf JJ, Kahler RA, Schroeder TM . Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341: 19–39.

    Article  CAS  PubMed  Google Scholar 

  6. Krishnan V, Bryant HU, MacDougald OA . Regulation of bone mass by Wnt signaling. J Clin Invest 2006; 116: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ . Update on Wnt signaling in bone cell biology and bone disease. Gene 2012; 492: 1–18.

    Article  CAS  PubMed  Google Scholar 

  8. Edwards CM, Edwards JR, Lwin ST, Esparza J, Oyajobi BO, McCluskey B et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 2008; 111: 2833–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qiang YW, Shaughnessy JD, Yaccoby S . Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood 2008; 112: 374–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009; 114: 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 2006; 91: 192–199.

    CAS  PubMed  Google Scholar 

  12. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD . Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 109: 2106–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  14. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009; 113: 517–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Donofrio G, Bonomini S et al. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 2007; 67: 7665–7674.

    Article  CAS  PubMed  Google Scholar 

  16. Boland GM, Perkins G, Hall DJ, Tuan RS . Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004; 93: 1210–1230.

    Article  CAS  PubMed  Google Scholar 

  17. De Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C . Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34: 818–826.

    Article  CAS  PubMed  Google Scholar 

  18. Komiya Y, Habas R . Wnt signal transduction pathways. Organogenesis 2008; 4: 68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kühl M . Non-canonical Wnt signaling in Xenopus: regulation of axis formation and gastrulation. Semin Cell Dev Biol 2002; 13: 243–249.

    Article  PubMed  Google Scholar 

  20. Liu F, Kohlmeier S, Wang CY . Wnt signaling and skeletal development. Cell Signal 2008; 20: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  21. Baksh D, Boland GM, Tuan RS . Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 2007; 101: 1109–1124.

    Article  CAS  PubMed  Google Scholar 

  22. Baksh D, Tuan RS . Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 2007; 212: 817–826.

    Article  CAS  PubMed  Google Scholar 

  23. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007; 282: 30938–30948.

    Article  CAS  PubMed  Google Scholar 

  24. Santos A, Bakker AD, de Blieck-Hogervorst JM, Klein-Nulend J . WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK. Cytotherapy 2010; 12: 924–932.

    Article  CAS  PubMed  Google Scholar 

  25. Minami Y, Oishi I, Endo M, Nishita M . Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239: 1–15.

    CAS  PubMed  Google Scholar 

  26. Liu Y, Rubin B, Bodine PV, Billiard J . Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem 2008; 105: 497–502.

    Article  CAS  PubMed  Google Scholar 

  27. Billiard J, Way DS, Seestaller-Wehr LM, Moran RA, Mangine A, Bodine PV . The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol Endocrinol 2005; 19: 90–101.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Ross JF, Bodine PV, Billiard J . Homodimerization of Ror2 tyrosine kinase receptor induces 14–3–3(beta) phosphorylation and promotes osteoblast differentiation and bone formation. Mol Endocrinol 2007; 21: 3050–3061.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Bhat RA, Seestaller-Wehr LM, Fukayama S, Mangine A, Moran RA et al. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation. Mol Endocrinol 2007; 21: 376–387.

    Article  CAS  PubMed  Google Scholar 

  30. Qiang YW, Chen Y, Hu B, Qiang W, Hueck C, Yaccoby S et al. Secreted frizzled-related protein-3 (sFRP3) is produced by myeloma cells and augments wnt3a-induced differentiation of mesenchymal stem cells and OPG production in osteoblasts. Blood 2011; 118: 808a.

    Google Scholar 

  31. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med 2005; 11: 880–885.

    Article  CAS  PubMed  Google Scholar 

  32. Penolazzi L, Lisignoli G, Lambertini E, Torreggiani E, Manferdini C, Lolli A et al. Transcription factor decoy against NFATc1 in human primary osteoblasts. Int J Mol Med 2011; 28: 199–206.

    CAS  PubMed  Google Scholar 

  33. D'Souza S, Del Prete D, Jin S, Sun Q, Huston AJ, Kostov FE et al. Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 2011; 118: 6871–6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106: 3160–3165.

    Article  CAS  PubMed  Google Scholar 

  35. Fromigué O, Haÿ E, Barbara A, Marie PJ . Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem 2010; 285: 25251–25258.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lisignoli G, Toneguzzi S, Piacentini A, Cristino S, Grassi F, Cavallo C et al. Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and beta-N-acetylhexosaminidase release. J Cell Physiol 2003; 194: 71–79.

    Article  CAS  PubMed  Google Scholar 

  37. Coelho LF, Magno de Freitas Almeida G, Mennechet FJ, Blangy A, Uzé G . Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression. Proc Natl Acad Sci USA 2005; 102: 11917–11922.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rauner M, Stein N, Winzer M, Goettsch C, Zwerina J, Schett G et al. WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. J Bone Miner Res 2012; 27: 575–585.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the International Myeloma Foundation, the Italian Ministry of Health (Progetti Regione Emilia Romagna), and the Associazione Italiana per la Ricerca sul Cancro (AIRC: NG: IG2099 no. 8530; AN: IG4569 and Special Program Molecular Clinical Oncology 5 per mille no. 9965). We would like to thank Rebecca Silbermann for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Giuliani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolzoni, M., Donofrio, G., Storti, P. et al. Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells. Leukemia 27, 451–463 (2013). https://doi.org/10.1038/leu.2012.190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.190

Keywords

This article is cited by

Search

Quick links