Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Improvement in long-term outcomes with successive Total Therapy trials for multiple myeloma: are patients now being cured?

Abstract

The concept of applying all active therapeutic agents in Total Therapy (TT) clinical trials for newly diagnosed multiple myeloma was pursued with the intent of developing curative treatment. The results of TT1 (n=231), TT2 (n=668) without or with thalidomide and TT3 with added bortezomib (n=303) have been reported. An update with median follow-up times of 17.1, 8.7 and 5.5 years, respectively, is provided. Conditional overall survival (OS) analysis from a 4-year landmark was applied to account for earlier protocol failure owing to disease aggressiveness and toxicities. Cumulative relative survival was computed in the context of age- and gender-matched US population, and interval-specific relative survival ratios were estimated to determine times to normal survival expectation. Based on Cox model-adjusted statistics, OS, progression-free survival and complete-response duration all improved with the transitions from TT1 to TT2 to TT3; improvement was also evident from time-to-progression estimates, 4-year conditional survival data and cumulative relative survival. Interval-specific relative survival normalized progressively sooner, reaching near-normal levels with TT3 in patients who attained complete response. Thus, a strategy using all myeloma-effective agents up-front seems effective at preventing, in progressively larger patient cohorts over time, the outgrowth of resistant tumor cells that account for ongoing relapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Y, Barlogie B, Shaughnessy JD . The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009; 23: 1941–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlogie B, Tricot GJ, van Rhee F, Angtuaco E, Walker R, Epstein J et al. Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. Br J Haematol 2006; 135: 158–164.

    Article  PubMed  Google Scholar 

  5. Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med 2006; 354: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  6. Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of Total Therapy 3. Br J Haematol 2007; 138: 176–185.

    Article  CAS  PubMed  Google Scholar 

  7. Nair B, van Rhee F, Shaughnessy JD, Anaissie E, Szymonifka J, Hoering A et al. Superior results of Total Therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance. Blood 2010; 115: 4168–4173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 2011; 117: 4691–4695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplan EL, Meier P . Nonparametric estimation using incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  10. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    Article  CAS  PubMed  Google Scholar 

  11. Mantel N . Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163–170.

    CAS  PubMed  Google Scholar 

  12. Cox DR . Regression models and life-tables. J Royal Stat Soc Ser B 1972; 34: 187–220.

    Google Scholar 

  13. Dickman PW, Sloggett A, Hills M, Hakulinen T . Regression models for relative survival. Stat Med 2004; 23: 51–64.

    Article  PubMed  Google Scholar 

  14. Jacobson J, Zhan F, Sawyer J, Tricot G, Barlogie B, Shaughnessy J . Gene expression reflects changes in ploidy of some, but not all chromosomes, in multiple myeloma. Blood 2002; 100: 316a.

    Google Scholar 

  15. Shaughnessy JD, Barlogie B . Integrating cytogenetics and gene expression profiling in the molecular analysis of multiple myeloma. Int J Hematol 2002; 76: 59–64.

    Article  PubMed  Google Scholar 

  16. Shaughnessy JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca R . Risk-Adapted Therapy; Promises and Pitfalls.http://webcast.aacr.org/portal/p/2011annual/3577.

  18. Frei E, Holland JF, Schneiderman MA, Pinkel D, Selkirk G, Freireich EJ et al. A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood 1958; 13: 1126–1148.

    PubMed  Google Scholar 

  19. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  20. Barlogie B, Hittelman W, Spitzer G, Trujilo JM, Hart JS, Smallwood L et al. Correlation of DNA distribution abnormalities with cytogenetic findings in human adult leukemia and lymphoma. Cancer Res 1977; 37: 4400–4407.

    CAS  PubMed  Google Scholar 

  21. San-Miguel JF, Mateos MV . Can multiple myeloma become a curable disease? Haematologica 2011; 96: 1246–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Lopez J, Blade J, Mateos MV, Grande C, Alegre A, García-Laraña J et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood 2011; 118: 529–534.

    Article  CAS  PubMed  Google Scholar 

  23. Barlogie B, Crowley J . Could CR mean cure? Blood 2011; 118: 483.

    Article  CAS  PubMed  Google Scholar 

  24. Rajkumar SV, Gahrton G, Bergsagel PL . Approach to the treatment of multiple myeloma: a clash of philosophies. Blood 2011; 118: 3205–3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richardson PG, Laubach J, Mitsiades CS, Schlossman R, Hideshima T, Redman K et al. Managing multiple myeloma: the emerging role of novel therapies and adapting combination treatment for higher risk settings. Br J Haematol 2011; 154: 755–762.

    Article  CAS  PubMed  Google Scholar 

  26. Hoering A, Crowley J, Shaughnessy JD, Hollmig K, Alsayed Y, Szymonifka J et al. Complete remission in multiple myeloma examined as time-dependent variable in terms of both onset and duration in Total Therapy protocols. Blood 2009; 114: 1299–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaughnessy JD, Qu P, Usmani S, Heuck CJ, Zhang Q, Zhou Y et al. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood 2011; 118: 3512–3524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haessler J, Shaughnessy JD, Zhan F, Crowley J, Epstein J, van Rhee F et al. Benefit of complete response in multiple myeloma limited to high-risk subgroup identified by gene expression profiling. Clin Cancer Res 2007; 13: 7073–7079.

    Article  CAS  PubMed  Google Scholar 

  29. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007; 109: 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar SK, Dingli D, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al. Outcome after autologous stem cell transplantation for multiple myeloma in patients with preceding plasma cell disorders. Br J Haematol 2008; 141: 205–211.

    Article  PubMed  Google Scholar 

  31. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009; 23: 215–224.

    Article  CAS  PubMed  Google Scholar 

  32. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol 2011; 29: 1627–1633.

    Article  CAS  PubMed  Google Scholar 

  33. Corradini P, Voena C, Omedé P, Astolfi M, Boccadoro M, Dalla-Favera R et al. Detection of circulating tumor cells in multiple myeloma by a PCR-based method. Leukemia 1993; 7: 1879–1882.

    CAS  PubMed  Google Scholar 

  34. Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 2007; 25: 1121–1128.

    Article  PubMed  Google Scholar 

  35. Bartel TB, Haessler J, Brown TL, Shaughnessy JD, van Rhee F, Anaissie E et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009; 114: 2068–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, Nair B, Shaughnessy JD, Cartron MA, Haessler J, Anaissie E et al. Cytogenetic abnormalities in multiple myeloma: poor prognosis linked to concomitant detection in random and focal lesion bone marrow samples and associated with high-risk gene expression profile. Br J Haematol 2009; 145: 637–641.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anaissie EJ, van Rhee F, Hoering A, Waheed S, Alsayed Y, Petty N et al. Comparing toxicities and survival outcomes with Total Therapy 4 (TT4) for 70-gene (R70)-defined low-risk multiple myeloma (MM) to results obtained with Total Therapy 3 protocols TT3A and TT3B. Blood 2010; 116: 368.

    Google Scholar 

  38. Bladé J, Rosiñol L . Refining ‘total therapy’ for myeloma. Blood 2010; 115: 4152–4153.

    Article  PubMed  Google Scholar 

  39. Facon T, Avet-Loiseau H, Guillerm G, Moreau P, Geneviève F, Zandecki M et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 2001; 97: 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  40. Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106: 2837–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Avet-Loiseau H, Soulier J, Fermand JP, Yakoub-Agha I, Attal M, Hulin C et al. Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. Leukemia 2010; 24: 623–628.

    Article  CAS  PubMed  Google Scholar 

  42. Shaughnessy JD, Haessler J, van Rhee F, Anaissie E, Pineda-Roman M, Cottler-Fox M et al. Testing standard and genetic parameters in 220 patients with multiple myeloma with complete data sets: superiority of molecular genetics. Br J Haematol 2007; 137: 530–536.

    Article  CAS  PubMed  Google Scholar 

  43. Shaughnessy JD, Zhou Y, Haessler J, van Rhee F, Anaissie E, Nair B et al. TP53 deletion is not an adverse feature in multiple myeloma treated with total therapy 3. Br J Haematol 2009; 147: 347–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 2010; 116: 2543–2545.

    Article  CAS  PubMed  Google Scholar 

  45. Barlogie B, Smallwood L, Smith T, Alexanian R . High serum levels of lactic dehydrogenase identify a high-grade lymphoma-like myeloma. Ann Intern Med 1989; 110: 521–525.

    Article  CAS  PubMed  Google Scholar 

  46. Nair BP, Waheed S, Hoering A, VanRhee F, Anaissie EJ, Lorsbach R et al. Primary plasma cell leukemia (PCL): clinical and laboratory presentation and clinical outcome with total therapy (TT) protocols. J Clin Oncol 2010; 28: 15s.

    Article  Google Scholar 

  47. Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terré C, Lafage-Pochitaloff M et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myélome and the Groupe Français de Cytogénétique Hématologique. Blood 2001; 97: 822–825.

    Article  CAS  PubMed  Google Scholar 

  48. Shaughnessy JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  49. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 2010; 116: 2543–2553.

    Article  CAS  PubMed  Google Scholar 

  50. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Magrangeas F, Nasser V, Avet-Loiseau H, Loriod B, Decaux O, Granjeaud S et al. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood 2003; 101: 4998–5006.

    Article  CAS  PubMed  Google Scholar 

  52. Avet-Loiseau H, Mallard F, Campion L, Magrangeas F, Sebban C, Lioure B et al. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood. 2011; 117: 2009–2011.

    Article  PubMed  Google Scholar 

  53. Nair B, Shaughnessy JD, Zhou Y, Astrid-Cartron M, Qu P, van Rhee F et al. Gene expression profiling of plasma cells at myeloma relapse from tandem transplantation trial Total Therapy 2 predicts subsequent survival. Blood 2009; 113: 6572–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bladé J, Fernández de Larrea C, Cibeira MT, Jiménez R, Powles R . Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol 2011; 29: 3805–3812.

    Article  PubMed  Google Scholar 

  55. Usmani SZ, Mitchell A, Szymonifka J, Shaughnessy JD, Hoering A, Alsayed Y et al. Extramedullary disease (EMD): a common terminal pathway in multiple myeloma (MM) progression. J Clin Oncol 2011; 29: 8068.

    Article  Google Scholar 

Download references

Acknowledgements

We recognize Mr Nathan Petty, Ms Susan Panozzo, Mr Doug Steward, Mr Clyde Bailey, the UAMS-MIRT data management team, the UAMS-MIRT nursing staff, referring physicians and our patients—without whom this body of work would not be possible. The manuscript was edited by Peggy Brenner, Office of Grants and Scientific Publications, University of Arkansas for Medical Sciences. This work has been supported by a grant from the National Cancer Institute, the National Institutes of Health (grant number CA 55813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Z Usmani.

Ethics declarations

Competing interests

Dr Usmani is a consultant to Celgene, Millennium and Onyx and has received speaking honoraria from Celgene. Dr Barlogie has received research funding from Celgene and Novartis. He is a consultant to Celgene and Genzyme and has received speaking honoraria from Celgene and Millennium. Dr Barlogie is a co-inventor on patents and patent applications related to use of GEP in cancer medicine.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usmani, S., Crowley, J., Hoering, A. et al. Improvement in long-term outcomes with successive Total Therapy trials for multiple myeloma: are patients now being cured?. Leukemia 27, 226–232 (2013). https://doi.org/10.1038/leu.2012.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.160

Keywords

This article is cited by

Search

Quick links