Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

The novel tribody [(CD20)2xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells

Abstract

Bispecific antibodies (bsab) offer a promising approach for optimizing antibody-based therapies. In the present study, [(CD20)2xCD16], a recombinant CD20- and CD16-directed bsab in the tribody format, was designed to optimize recruitment of FcγRIII (CD16)-positive effector cells. [(CD20)2xCD16] retained the antigen specificities of the parental monoclonal antibodies and binding to FcγRIIIa was not compromised by the F/V polymorphism at amino-acid position 158. [(CD20)2xCD16] mediated potent lysis of lymphoma cell lines and freshly isolated tumor cells from patients, even at low picomolar concentrations (10 pM). Irrespective of the CD16a allotype, potency as well as efficacy of lysis obtained with the tribody was significantly higher than lysis triggered by rituximab. Tumor cell killing also occurred when autologous NK cells were used as effector cells. Compared with rituximab, the tribody demonstrated depletion of autologous B cells in ex vivo whole blood assays at 100-fold lower antibody concentration. In mice with a reconstituted humanized hematopoietic system, established by transplantation of human CD34-positive cord blood cells, this novel tribody significantly depleted autologous human B cells. Thus, tribodies such as [(CD20)2xCD16], recruiting CD16-positive effector cells, may represent promising candidates for clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS . Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95: 135–143.

    Article  CAS  PubMed  Google Scholar 

  2. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–2833.

    Article  CAS  PubMed  Google Scholar 

  3. Brugger W, Hirsch J, Grunebach F, Repp R, Brossart P, Vogel W et al. Rituximab consolidation after high-dose chemotherapy and autologous blood stem cell transplantation in follicular and mantle cell lymphoma: a prospective, multicenter phase II study. Ann Oncol 2004; 15: 1691–1698.

    Article  CAS  PubMed  Google Scholar 

  4. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 235–242.

    Article  CAS  PubMed  Google Scholar 

  5. Ball ED, Broome HE . Monoclonal antibodies in the treatment of hematologic malignancy. Best Pract Res Clin Haematol 2010; 23: 403–416.

    Article  CAS  PubMed  Google Scholar 

  6. Forstpointner R, Dreyling M, Repp R, Hermann S, Hanel A, Metzner B et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2004; 104: 3064–3071.

    Article  CAS  PubMed  Google Scholar 

  7. Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005; 106: 3725–3732.

    Article  CAS  PubMed  Google Scholar 

  8. Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 2005; 105: 1417–1423.

    Article  CAS  PubMed  Google Scholar 

  9. Carter PJ . Potent antibody therapeutics by design. Nat Rev Immunol 2006; 6: 343–357.

    Article  CAS  PubMed  Google Scholar 

  10. Alduaij W, Ivanov A, Honeychurch J, Cheadle E, Potluri S, Lim SH et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 2011; 117: 4519–4529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glennie MJ, French RR, Cragg MS, Taylor RP . Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 2007; 44: 3823–3837.

    Article  CAS  PubMed  Google Scholar 

  12. Weiner GJ . Rituximab: mechanism of action. Semin Hematol 2010; 47: 115–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cragg MS . CD20 antibodies: doing the time warp. Blood Jul 14; 118(2): 219-220.

    Article  CAS  PubMed  Google Scholar 

  14. Cartron G, Trappe RU, Solal-Celigny P, Hallek M . Interindividual variability of response to rituximab: from biological origins to individualized therapies. Clin Cancer Res 2011; 17: 19–30.

    Article  CAS  PubMed  Google Scholar 

  15. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171: 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  16. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  17. Nimmerjahn F, Ravetch JV . Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 2005; 310: 1510–1512.

    Article  CAS  PubMed  Google Scholar 

  18. Nimmerjahn F, Ravetch JV . Antibodies, Fc receptors and cancer. Curr Opin Immunol 2007; 19: 239–245.

    Article  CAS  PubMed  Google Scholar 

  19. de Haij S, Jansen JH, Boross P, Beurskens FJ, Bakema JE, Bos DL et al. In vivo Cytotoxicity of Type I CD20 antibodies critically depends on Fc receptor ITAM signaling. Cancer Res 2010; 70: 3209–3217.

    Article  CAS  PubMed  Google Scholar 

  20. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 2008; 26: 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  21. Weng WK, Levy R . Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003; 21: 3940–3947.

    Article  CAS  PubMed  Google Scholar 

  22. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M . Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 90: 1109–1114.

    CAS  PubMed  Google Scholar 

  23. Veeramani S, Wang SY, Dahle C, Blackwell S, Jacobus L, Knutson T et al. Rituximab infusion induces NK activation in lymphoma patients with the high affinity CD16 polymorphism. Blood 2011; 118: 3347–3349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cartron G, Watier H, Golay J, Solal-Celigny P . From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104: 2635–2642.

    Article  CAS  PubMed  Google Scholar 

  25. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004; 104: 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  26. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006; 177: 362–371.

    Article  CAS  PubMed  Google Scholar 

  27. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY . Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Drug Discov Today 2007; 12: 898–910.

    Article  CAS  PubMed  Google Scholar 

  28. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcgRIII and antibody-dependent cellular toxicity. J Biol Chem 2002; 277: 26733–26740.

    Article  CAS  PubMed  Google Scholar 

  29. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 2003; 278: 3466–3473.

    Article  CAS  PubMed  Google Scholar 

  30. Mossner E, Brunker P, Moser S, Puntener U, Schmidt C, Herter S et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct- and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115: 4393–4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruenke J, Barbin K, Kunert S, Lang P, Pfeiffer M, Stieglmaier K et al. Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcgRIII (CD16). Br J Haematol 2005; 130: 218–228.

    Article  CAS  PubMed  Google Scholar 

  32. Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H et al. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 2008 31: 871–884.

    Article  CAS  PubMed  Google Scholar 

  33. McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U et al. Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol 2001; 166: 6112–6117.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W et al. Effector Cell Recruitment with Novel Fv-based Dual-affinity Re-targeting Protein Leads to Potent Tumor Cytolysis and in Vivo B-cell Depletion. J Mol Biol 2010; 399: 436–449.

    Article  CAS  PubMed  Google Scholar 

  35. Hombach A, Jung W, Pohl C, Renner C, Sahin U, Schmits R et al. A CD16/CD30 bispecific monoclonal antibody induces lysis of Hodgkin's cells by unstimulated natural killer cells in vitro and in vivo. Int J Cancer 1993; 55: 830–836.

    Article  CAS  PubMed  Google Scholar 

  36. Borghaei H, Alpaugh RK, Bernardo P, Palazzo IE, Dutcher JP, Venkatraj U et al. Induction of adaptive Anti-HER2/neu immune responses in a Phase 1B/2 trial of 2B1 bispecific murine monoclonal antibody in metastatic breast cancer (E3194): a trial coordinated by the Eastern Cooperative Oncology Group. J Immunother 2007; May-Jun 30: 455–467.

    Article  CAS  PubMed  Google Scholar 

  37. Hartmann F, Renner C, Jung W, da Costa L, Tembrink S, Held G et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 2001; 7: 1873–1881.

    CAS  PubMed  Google Scholar 

  38. Hartmann F, Renner C, Jung W, Deisting C, Juwana M, Eichentopf B et al. Treatment of refractory Hodgkin's disease with an anti-CD16/CD30 bispecific antibody. Blood 1997; 89: 2042–2047.

    CAS  PubMed  Google Scholar 

  39. Rossi EA, Goldenberg DM, Cardillo TM, McBride WJ, Sharkey RM, Chang CH . Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 2006; 103: 6841–6846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoonjans R, Willems A, Schoonooghe S, Fiers W, Grooten J, Mertens N . Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol 2000; 165: 7050–7057.

    Article  CAS  PubMed  Google Scholar 

  41. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321: 974–977.

    Article  CAS  PubMed  Google Scholar 

  42. Chames P, Baty D . Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009 1: 539–547.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thakur A, Lum LG . Cancer therapy with bispecific antibodies: Clinical experience. Curr Opin Mol Ther 2010; 12: 340–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fleit HB . Monoclonal antibodies to human neutrophil Fc gamma RIII (CD16) identify polypeptide epitopes. Clin Immunol Immunopathol 1991; 59: 222–235.

    Article  CAS  PubMed  Google Scholar 

  45. Baum W, Steininger H, Bair HJ, Becker W, Hansen-Hagge TE, Kressel M et al. Therapy with CD7 monoclonal antibody TH-69 is highly effective for xenografted human T-cell ALL. Br J Haematol 1996; 95: 327–338.

    Article  CAS  PubMed  Google Scholar 

  46. Peipp M, Kupers H, Saul D, Schlierf B, Greil J, Zunino SJ et al. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res 2002; 62: 2848–2855.

    CAS  PubMed  Google Scholar 

  47. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89: 4285–4289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwemmlein M, Stieglmaier J, Kellner C, Peipp M, Saul D, Oduncu F et al. A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells. Leukemia 2007; 21: 1405–1412.

    Article  CAS  PubMed  Google Scholar 

  49. Peipp M, Saul D, Barbin K, Bruenke J, Zunino SJ, Niederweis M et al. Efficient eukaryotic expression of fluorescent scFv fusion proteins directed against CD antigens for FACS applications. J Immunol Methods 2004; 285: 265–280.

    Article  CAS  PubMed  Google Scholar 

  50. Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, Dechant M, Beyer T et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 2008; 112: 2390–2399.

    Article  CAS  PubMed  Google Scholar 

  51. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    Article  CAS  PubMed  Google Scholar 

  52. Mertens N . Tribodies: Fab-scFv fusion proteins as a platform to create multifunctional pharmaceuticals. In: Kontermann R (ed). Bispecific Antibodies. Springer: Heidelberg, 2011.

    Google Scholar 

  53. Bexborn F, Engberg AE, Sandholm K, Mollnes TE, Hong J, Nilsson Ekdahl K . Hirudin versus heparin for use in whole blood in vitro biocompatibility models. J Biomed Mater Res A 2009; 89: 951–959.

    Article  PubMed  Google Scholar 

  54. Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang CH . Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood 2008; 111: 2211–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nechansky A, Schuster M, Jost W, Siegl P, Wiederkum S, Gorr G et al. Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glyco-engineering of therapeutic antibodies. Mol Immunol 2007; 44: 1815–1817.

    Article  CAS  PubMed  Google Scholar 

  56. Wang SY, Veeramani S, Racila E, Cagley J, Fritzinger DC, Vogel CW et al. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 2009; 114: 5322–5330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Kolk LE, Grillo-Lopez AJ, Baars JW, Hack CE, van Oers MH . Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol 2001; 115: 807–811.

    Article  CAS  PubMed  Google Scholar 

  58. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754–758.

    Article  CAS  PubMed  Google Scholar 

  59. Congy-Jolivet N, Bolzec A, Ternant D, Ohresser M, Watier H, Thibault G . Fc gamma RIIIa expression is not increased on natural killer cells expressing the Fc gamma RIIIa-158V allotype. Cancer Res 2008; 68: 976–980.

    Article  CAS  PubMed  Google Scholar 

  60. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan CH et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011; 118: 2530–2540.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Anja Muskulus, Heidi Bosse and Britta von Below are kindly acknowledged for expert technical assistance. This study was supported by research grant 2007.065.1 and 2007.065.2 from the Wilhelm Sander-Stiftung (Munich, Germany), as well as intramural funding from the Christian-Albrechts University Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Peipp.

Ethics declarations

Competing interests

FJB, PWHIP, JGJvdW are employees of Genmab, a biotech company that develops therapeutic human monoclonal antibodies, including the CD20 antibody ofatumumab. MP serves as consultant for Genmab. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glorius, P., Baerenwaldt, A., Kellner, C. et al. The novel tribody [(CD20)2xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells. Leukemia 27, 190–201 (2013). https://doi.org/10.1038/leu.2012.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.150

Keywords

This article is cited by

Search

Quick links