Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders

Abstract

In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole-exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematological disorders. Alterations in splicing factor 3 subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 small nuclear RNA auxillary factor 1 (U2AF1) and serine arginine-rich splicing factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematological malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematological disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Will CL, Schneider C, MacMillan AM, Katopodis NF, Neubauer G, Wilm M et al. A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO J 2001; 20: 4536–4546.

    Article  CAS  PubMed Central  Google Scholar 

  2. Chen M, Manley JL . Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10: 741–754.

    Article  CAS  PubMed Central  Google Scholar 

  3. Ward AJ, Cooper TA . The pathobiology of splicing. J Pathol 2010; 220: 152–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed Central  Google Scholar 

  5. Marz M, Kirsten T, Stadler PF . Evolution of spliceosomal snRNA genes in metazoan animals. J Mol Evol 2008; 67: 594–607.

    Article  CAS  Google Scholar 

  6. Corden JL, Patturajan MA . CTD function linking transcription to splicing. Trends Biochem Sci 1997; 22: 413–416.

    Article  CAS  Google Scholar 

  7. Valadkhan S . snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 2005; 9: 603–608.

    Article  CAS  Google Scholar 

  8. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R . Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 2006; 34: 3955–3967.

    Article  CAS  PubMed Central  Google Scholar 

  9. Yokoi A, Kotake Y, Takahashi K, Kadowaki T, Matsumoto Y, Minoshima Y et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J 2011; 278: 4870–4880.

    Article  CAS  Google Scholar 

  10. Lopez AJ . Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 1998; 32: 279–305.

    Article  CAS  Google Scholar 

  11. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542–545.

    Article  CAS  Google Scholar 

  12. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  Google Scholar 

  13. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed Central  Google Scholar 

  14. Ghosh G, Adams JA . Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 2011; 278: 587–597.

    Article  CAS  PubMed Central  Google Scholar 

  15. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A . Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 2007; 8: 234–244.

    Article  CAS  Google Scholar 

  16. Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R . Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005; 579: 1900–1903.

    Article  CAS  Google Scholar 

  17. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011; 44: 53–57.

    Article  PubMed Central  Google Scholar 

  18. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  Google Scholar 

  19. Cazzola M, Invernizzi R . Ring sideroblasts and sideroblastic anemias. Haematologica 2011; 96: 789–792.

    Article  CAS  PubMed Central  Google Scholar 

  20. Ducamp S, Kannengiesser C, Touati M, Garcon L, Guerci-Bresler A, Guichard JF et al. Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations. Hum Mutat 2011; 32: 590–597.

    Article  CAS  Google Scholar 

  21. Steensma DP, Hecksel KA, Porcher JC, Lasho TL . Candidate gene mutation analysis in idiopathic acquired sideroblastic anemia (refractory anemia with ringed sideroblasts). Leuk Res 2007; 31: 623–628.

    Article  CAS  Google Scholar 

  22. Sheftel AD, Richardson DR, Prchal J, Ponka P . Mitochondrial iron metabolism and sideroblastic anemia. Acta Haematol 2009; 122: 120–133.

    Article  CAS  Google Scholar 

  23. Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ . Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 2008; 80: 523–531.

    Article  CAS  Google Scholar 

  24. Latvala J, Parkkila S, Melkko J, Niemela O . Acetaldehyde adducts in blood and bone marrow of patients with ethanol-induced erythrocyte abnormalities. Mol Med 2001; 7: 401–405.

    Article  CAS  PubMed Central  Google Scholar 

  25. Napier I, Ponka P, Richardson DR . Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 2005; 105: 1867–1874.

    Article  CAS  Google Scholar 

  26. Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H . Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev 2005; 19: 536–541.

    Article  CAS  PubMed Central  Google Scholar 

  27. Visconte V, Makishima H, Jankowska A, Traina F, Szpurka H, Rogers HJ et al. Association of SF3B1 with ring sideroblasts in patients, in vivo, and in vitro models of Spliceosomal Dysfuntion. Blood 2011; 118: 457.

    Google Scholar 

  28. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239–6246.

    Article  CAS  PubMed Central  Google Scholar 

  29. Damm F, Thol F, Kosmider O, Kade S, Loffeld P, Dreyfus F et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia 2011; e-pub ahead of print 8 November 2011; doi:10.1038/leu.2011.321.

    Article  Google Scholar 

  30. Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 2012; 119: 569–572.

    Article  CAS  PubMed Central  Google Scholar 

  31. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    Article  CAS  PubMed Central  Google Scholar 

  32. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 2010; 24: 1799–1804.

    Article  CAS  Google Scholar 

  33. Saunthararajah Y, Maciejewski J . Polycomb segment myeloid malignancies. Blood 2012; 119: 1097–1098.

    Article  Google Scholar 

  34. Lasho TL, Finke CM, Hanson CA, Jimma T, Knudson RA, Ketterling RP et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 2011; e-pub ahead of print 8 November 2011; doi:10.1038/leu.2011.320.

    Article  Google Scholar 

  35. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed Central  Google Scholar 

  36. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    Article  CAS  PubMed Central  Google Scholar 

  37. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52.

    Article  Google Scholar 

  38. Makishima H, Sakaguchi H, Visconte V, Jerez A, Jankowska AM, Guinta KM et al. Acquired molecular defects in spliceosome machinery: novel pathogenetic pathways in myeloid leukemogenesis. Blood 2011; 118: 271.

    Article  Google Scholar 

  39. Traina F, Jankowska AM, Visconte V, Sugimoto Y, Szpurka H, Makishima H et al. Impact of molecular mutations on treatment response to hypomethylating agents in MDS. Blood 2011; 118: 461.

    Google Scholar 

  40. Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119: 3203–3210.

    Article  CAS  PubMed Central  Google Scholar 

  41. Edmond V, Moysan E, Khochbin S, Matthias P, Brambilla C, Brambilla E et al. Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J 2011; 30: 510–523.

    Article  CAS  Google Scholar 

  42. Nagata Y, Sanada M, Kon A, Yoshida K, Shiraishi Y, Sato-Otsubo A et al. Mutational spectrum analysis of interesting correlation and interrelationship between RNA splicing pathway and commonly targeted genes in myelodysplastic syndrome. Blood 2011; 118: 273.

    Google Scholar 

  43. Schnittger S, Meggendorfer M, Kohlmann A, Grossmann V, Yoshida K, Ogawa S et al. SRSF2 is mutated in 47.2% (77/163) of chronic myelomonocytic leukemia (CMML) and prognostically favorable in cases with concomitant RUNX1 mutations. Blood 2011; 118: 274.

    Google Scholar 

  44. Xiao R, Sun Y, Ding JH, Lin S, Rose DW, Rosenfeld MG et al. Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol Cell Biol 2007; 27: 5393–5402.

    Article  CAS  PubMed Central  Google Scholar 

  45. Thol F, Kade S, Schlarmann C, Loffeld P, Morgan M, Krauter J et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 2012; 119: 3578–3584.

    Article  CAS  Google Scholar 

  46. Matlin AJ, Clark F, Smith CW . Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6: 386–398.

    Article  CAS  Google Scholar 

  47. David CJ, Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010; 24: 2343–2364.

    Article  CAS  PubMed Central  Google Scholar 

  48. D'Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD et al. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci USA 1999; 96: 5598–5603.

    Article  CAS  Google Scholar 

  49. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20: 589–602.

    Article  CAS  Google Scholar 

  50. Huntsman MM, Tran BV, Potkin SG, Bunney WE, Jones EG . Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998; 95: 15066–15071.

    Article  CAS  Google Scholar 

  51. Vawter MP, Frye MA, Hemperly JJ, VanderPutten DM, Usen N, Doherty P et al. Elevated concentration of N-CAM VASE isoforms in schizophrenia. J Psychiatr Res 2000; 34: 25–34.

    Article  CAS  Google Scholar 

  52. Silberstein GB, Van Horn K, Strickland P, Roberts CT, Daniel CW . Altered expression of the WT1 wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci USA 1997; 94: 8132–8137.

    Article  CAS  Google Scholar 

  53. Yamaguchi F, Saya H, Bruner JM, Morrison RS . Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 1994; 91: 484–488.

    Article  CAS  Google Scholar 

  54. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  CAS  Google Scholar 

  55. Suzuki S, Kurata M, Abe S, Miyazawa R, Murayama T, Hidaka M et al. Overexpression of MCM2 in myelodysplastic syndromes: association with bone marrow cell apoptosis and peripheral cytopenia. Exp Mol Pathol 2012; 92: 160–166.

    Article  CAS  Google Scholar 

  56. Jankowska A, Huang Y, Ko M, Pape UJ, Makishima H, Szpurka H et al. Mechanisms of defective hydroxylation of 5-methylcytosine in MDS include pathways other than TET2 and IDH1/2. Blood 2011; 118: 462.

    Article  Google Scholar 

  57. Hammond SM, Wood MJ . Genetic therapies for RNA mis-splicing diseases. Trends Genet 2011; 27: 196–205.

    Article  CAS  Google Scholar 

  58. Rymond B . Targeting the spliceosome. Nat Chem Biol 2007; 3: 533–535.

    Article  CAS  Google Scholar 

  59. Albert BJ, McPherson PA, O'Brien K, Czaicki NL, Destefino V, Osman S et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther 2009; 8: 2308–2318.

    Article  CAS  PubMed Central  Google Scholar 

  60. Lagisetti C, Pourpak A, Goronga T, Jiang Q, Cui X, Hyle J et al. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity. J Med Chem 2009; 52: 6979–6990.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr K Koide from the University of Pittsburgh, PA for providing meayamycin and for sharing his expertise. We also thank Dr H Koseki from Riken, Japan for giving us the access to the SF3b1 heterozygous mice. This work was supported by the Cleveland Clinic Seed Support (RVT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R V Tiu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visconte, V., Makishima, H., Maciejewski, J. et al. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 26, 2447–2454 (2012). https://doi.org/10.1038/leu.2012.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.130

Keywords

This article is cited by

Search

Quick links