Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells

Abstract

Proliferation and differentiation of hematopoietic stem/progenitor cells (HSPC) within bone marrow (BM) niches are regulated by adhesion molecules and cytokines produced by mesenchymal stem/progenitor cells (MPC) and osteoblasts (OB). HSPCs that egresses to peripheral blood are widely used for transplant and granulocyte-colony stimulating factor (G-CSF) is used clinically to induce mobilization. The mechanisms, through which G-CSF regulates HSPC trafficking, however, are not completely understood. Herein we show that G-CSF-driven neutrophil expansion alters the BM niche that leads to HSPC mobilization. AlcamSca-1+MPC and Alcam+Sca-1 OB are reduced coincident with mobilization, which correlates inversely with BM neutrophil expansion. In mice made neutropenic by the neutrophil-specific anti-Ly6G antibody, G-CSF-mediated reduction in MPC and OB is attenuated and mobilization reduced without an effect on monocytes/macrophages. Neutrophils, expanded in response to G-CSF-induced MPC and OB apoptosis leading to reduced production of BM HSPC retention factors, including stromal cell-derived factor-1, stem cell factor and vascular cell adhesion molecule-1. Blockade of neutrophil reactive oxygen species attenuates G-CSF-mediated MPC and OB apoptosis. These data show that the expansion of BM neutrophils by G-CSF contributes to the transient degradation of retention mechanisms within the BM niche, facilitating enhanced HSPC egress/mobilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  Google Scholar 

  2. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  3. Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 2010; 116: 1422–1432.

    Article  CAS  Google Scholar 

  4. Ding L, Saunders TL, Enikolopov G, Morrison SJ . Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457–462.

    Article  CAS  Google Scholar 

  5. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  Google Scholar 

  6. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  Google Scholar 

  7. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  Google Scholar 

  8. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  Google Scholar 

  9. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL . Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933–1936.

    Article  CAS  Google Scholar 

  10. Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J . Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 2003; 102: 1249–1253.

    Article  CAS  Google Scholar 

  11. Bhattacharya D, Czechowicz A, Ooi AG, Rossi DJ, Bryder D, Weissman IL . Niche recycling through division-independent egress of hematopoietic stem cells. J Exp Med 2009; 206: 2837–2850.

    Article  CAS  Google Scholar 

  12. Hoggatt J, Pelus LM . Many mechanisms mediating mobilization: an alliterative review. Curr Opin Hematol 2011.

  13. Pelus LM, Horowitz D, Cooper SC, King AG . Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 2002; 43: 257–275.

    Article  Google Scholar 

  14. Thomas J, Liu F, Link DC . Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 2002; 9: 183–189.

    Article  Google Scholar 

  15. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12: 657–664.

    Article  CAS  Google Scholar 

  16. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  Google Scholar 

  17. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  Google Scholar 

  18. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  Google Scholar 

  19. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R . Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 1996; 380: 171–175.

    Article  CAS  Google Scholar 

  20. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    Article  CAS  Google Scholar 

  21. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  CAS  Google Scholar 

  22. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  Google Scholar 

  23. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 2004; 103: 110–119.

    Article  CAS  Google Scholar 

  24. Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65–72.

    Article  CAS  Google Scholar 

  25. Christopher MJ, Link DC . Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 2008; 23: 1765–1774.

    Article  Google Scholar 

  26. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  Google Scholar 

  27. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116: 4815–4828.

    Article  CAS  Google Scholar 

  28. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261–271.

    Article  CAS  Google Scholar 

  29. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC . Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208: 251–260.

    Article  CAS  Google Scholar 

  30. Liu F, Poursine-Laurent J, Link DC . Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.

    CAS  PubMed  Google Scholar 

  31. Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H et al. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 2008; 180: 2045–2053.

    Article  CAS  Google Scholar 

  32. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE . Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 2008; 83: 64–70.

    Article  CAS  Google Scholar 

  33. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007; 282: 27285–27297.

    Article  CAS  Google Scholar 

  34. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 2003; 112: 915–923.

    Article  CAS  Google Scholar 

  35. Almeida M, Han L, Ambrogini E, Bartell SM, Manolagas SC . Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol 2010; 24: 2030–2037.

    Article  CAS  Google Scholar 

  36. Tesio M, Golan K, Corso S, Giordano S, Schajnovitz A, Vagima Y et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 2011; 117: 419–428.

    Article  CAS  Google Scholar 

  37. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 2000; 275: 24273–24278.

    Article  CAS  Google Scholar 

  38. Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 1999; 93: 2928–2935.

    CAS  PubMed  Google Scholar 

  39. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  Google Scholar 

  40. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.

    Article  CAS  Google Scholar 

  41. Florey O, Haskard DO . Sphingosine 1-phosphate enhances Fc gamma receptor-mediated neutrophil activation and recruitment under flow conditions. J Immunol 2009; 183: 2330–2336.

    Article  CAS  Google Scholar 

  42. Fornoni A, Cornacchia F, Howard GA, Roos BA, Striker GE, Striker LJ . Cyclosporin A affects extracellular matrix synthesis and degradation by mouse MC3T3-E1 osteoblasts in vitro. Nephrol Dial Transplant 2001; 16: 500–505.

    Article  CAS  Google Scholar 

  43. Yang JJ, Kettritz R, Falk RJ, Jennette JC, Gaido ML . Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase. Am J Pathol 1996; 149: 1617–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26: 63–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL069669 and HL096305 (to LMP) and partially supported by National Institute of Diabetes and Digestive and Kidney Diseases Center for Excellence in Molecular Hematology grant P30 DK090948. JH was supported sequentially by NIH Training Grants DK07519 and HL007910. Flow cytometry was performed in the Flow Cytometry Resource Facility of the Indiana University Simon Cancer Center (NCI P30 CA082709). This study was also supported by US Public Health Service grants HL069669, and HL096305 from the National Institutes of Health (to LMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Pelus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Hu, P., Hoggatt, J. et al. Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 26, 2375–2383 (2012). https://doi.org/10.1038/leu.2012.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.117

Keywords

This article is cited by

Search

Quick links