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Mutations galore in myeloproliferative neoplasms: Would the real Spartacus
please stand up?
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Current evidence supports the view that BCR-ABL1 is the
disease-causing mutation in chronic myelogenous leukemia
(CML): (i) it is invariably present in CML and absent in other
chronic myeloid malignancies;1 (ii) it induces CML-like disease
in mice;2 and (iii) anti-BCR-ABL1 targeted therapy in CML
results in complete and durable hematologic, cytogenetic and
molecular remissions.3 In an ongoing quest to identify
BCR-ABL1-like mutations in other myeloproliferative neoplasms
(MPNs), scientists have encountered an apparently endless
number of mutations involving a spectrum of genes, including
JAK2, MPL, LNK, CBL, IKZF1, IDH1, IDH2, TET2, ASXL1
and EZH2 (Table 1).4 In the current issue of Leukemia, three
papers5–7 report on yet another gene, DNMT3A, which is
affected by somatic mutations in both BCR-ABL1-negative MPN
and myelodysplastic syndromes (MDSs).

DNMT3A, DNMT3B and DNMT1 are DNA cytosine methyl-
transferases that are essential in establishing and maintaining
DNA methylation patterns in mammals.8,9 Germline DNMT3B
mutations have been associated with the autosomal recessive
immunodeficiency, centromere instability and facial anomalies
(ICF) syndrome.10,11 Heterozygous DNMT3AR882 mutations
were first reported in acute myeloid leukemia (AML) by
Yamashita et al.12 in 3 (4%) of 74 patients. Subsequently, Ley
et al.13 described DNMT3AR882 (60% of mutant DNMT3A
cases) and other heterozygous DNMT3A mutations in 62
(B22%) of 281 AML patients. In the latter study, DNMT3A
mutations were enriched for older patients, normal karyotype
and mutations involving FLT3, NPM1 and IDH1. Multivariable
analysis identified mutant DNMT3A, older age and FLT3
mutations as risk factors for survival, but the particular
observation was confounded by the inclusion of patients with
favorable cytogenetic and molecular (NPM1-mutated/FLT3-
unmutated) profiles; DNMT3A mutations were mutually ex-
clusive of the former and did not affect survival in the latter
group of patients.13

In the current issue of Leukemia, Walter et al.7 report on
DNMT3A mutations in 12 (8%) of 144 patients with MDS (one
patient had two DNMT3A mutations that made the total 13). As
was the case with AML, R882, which is located in the
methyltransferase domain, was the most frequent amino acid
affected by these mutations (4 of 13 mutations; B31%). The
other mutations were also located in the methyltransferase
domain and included P904L (n¼ 2), L737R, R771L, S770W,
S714C, R635W, Q237X and L442X. DNMT3A mutational
frequencies in MDS variants were 6% (4 of 67) for refractory
anemia (RA), 8% (6 of 72) for RA with excess blasts (RAEB), 20%
(1 of 5) for RA with ring sideroblasts (RARS), 10% (7 of 69) for
MDS with normal karyotype, 6% (2 of 36) for MDS with
complex karyotype and 6% (2 of 34) for MDS with either
trisomy 8 or �7/del(7q). In this particular MDS study, sample
size was too small and patient population too heterogeneous to
properly assess the prognostic value of DNMT3A mutations,

however, univariate analysis showed worse survival in
DNMT3A-mutated cases. In another MDS study, Ewalt et al.14

screened 100 patients with RAEB and found four cases (4%) with
DNMT3AR882 mutations, one of which also harbored a second
DNMT3A mutation (DNMT3AC709Y).

Also in the current issue of Leukemia, two papers report on
DNMT3A mutations in patients with MPN. Stegelmann et al.6

studied 30 patients each with essential thrombocythemia or
polycythemia vera, 16 with primary myelofibrosis, 4 with post-
thrombocythemia/polycythemia vera MF and 35 with blast
phase MPN; the corresponding mutational frequencies were
B0% (0 of 30), 7% (2 of 30), 6% (1 of 16), 50% (2 of 4) and
14% (5 of 35). In the second study, Abdel-Wahab et al.5 studied
46 patients with primary myelofibrosis, 22 with post-thrombo-
cythemia/polycythemia vera MF and 11 with blast phase MPN;
DNMT3A mutational frequencies were reported at 7, 0 and 0%,
respectively. All 13 DNMT3A mutations reported in these two
studies were heterozygous and included R882H/C (n¼ 5), E477
(nonsense), E523 (nonsense), W305 (frameshift), R488 (frame-
shift), P264 (frameshift), D768 (frameshift), G120 (frameshift)
and P419 (frameshift); additional DNMT3A sequence variants
(unannotated single nucleotide polymorphisms vs missense
mutations) that were reported included N501S, W860R, E30A,
P99S, P569A, R659H and R899C. DNMT3A mutations in the
aforementioned two MPN studies were documented to occur in
the presence or absence of JAK2, IDH, ASXL1 or TET2
mutations.

The question now is whether or not we have been enlightened
more about the pathogenesis of BCR-ABL1-negative MPN, as a
result of a growing list of mutations they harbor. Are these
mutations all critical drivers of the underlying myeloproliferative
process or are some of the mutations simply markers of cancer-
associated genomic instability? Which mutations are important
for chronic phase disease and which ones contribute to disease
transformation into myelofibrosis or AML? Is there more than
one critical mutation for a specific disease phenotype? (i.e., Do
multiple mutations share a common phenotype?) Alternatively,
are we dealing with more than three diseases in the WHO
category of BCR-ABL1-negative MPN? (i.e., Are we unintention-
ally lumping molecularly distinct diseases into a single
clinicopathologic entity?)

It is becoming increasingly evident that currently known
MPN-associated mutations likely represent secondary events,
are not necessarily mutually exclusive and do not display a
predictable pattern of clonal hierarchy.15,16 For example, in
a recent report, a patient with normal karyotype primary
myelofibrosis displayed four distinct mutations including
JAK2V617F, IDH2R140Q and two LNK mutations affecting
both parental LNK alleles;17 single colony studies were carried
out and disclosed one of the two LNK mutations as the first
and JAK2V617F as the last event, in the order of clonal
evolution. Others have shown that in patients with concomitant
TET2 and JAK2 mutations, the two can involve separate clones
or one can emerge before or after the other.15 Furthermore, no
one mutation has been directly implicated in leukemic
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Table 1 Currently known mutations in BCR-ABL1-negative myeloproliferative neoplasms

Mutations Chromosome
location

Mutational
frequency

Pathogenetic
relevance

JAK2 (Janus kinase 2)
JAK2V617F exon 14 mutation4

9p24 PVB96% (ref. 4)
ETB55% (ref. 4)
PMFB65% (ref. 4)
BP-MPNB50% (ref. 4)

Contributes to abnormal myeloproliferation and
progenitor cell-growth factor hypersensitivity4

JAK2 exon 12 mutation4 9p24 PVB3% (ref. 4) Contributes to primarily erythroid myeloproliferation4

MPL (Myeloproliferative leukemia virus
oncogene)
MPN-associated MPL mutations involve
exon 10 (ref. 4)

1p34 ETB3% (ref. 4)
PMFB10% (ref. 4)
BP-MPNB5% (ref. 4)

Contributes to primarily megakaryocytic
myeloproliferation4

LNK (as in Links) a.k.a. SH2B3
(a membrane-bound adaptor protein)
MPN-associated mutations were
monoallelic and involved exon 2
(ref. 22,27)

12q24.12 PVBrare27,43

ETBrare22,27

PMFBrare22,27

BP-MPNB10% (ref. 27)

Wild-type LNK is a negative regulator of JAK2
signaling44

TET2 (TET oncogene family member 2)
Mutations involve several exons4,45

4q24 PVB16% (ref. 4)
ETB5% (ref. 4)
PMFB17% (ref. 4)
BP-MPNB17% (ref. 4)
AMLB20% (ref. 46)
MDSB26% (ref. 47)
CMMLB51% (ref. 48)
SMB29% (ref. 49)
RARS-TB26% (ref. 50)

TET proteins catalyze conversion of
5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5 hmC), which favors demethylated DNA. Both TET1
(ref. 51) and TET2(ref. 32) display this catalytic
activity.
IDH and TET2 mutations might share a common
pathogenetic effect, which might include abnormal
DNA hypermethylation and impaired myelopoiesis.

ASXL1 (additional sex combs-like 1)
Exon 12 mutations52

20q11.1 ETB3% (ref. 53)
PMFB13% (ref. 54)
BP-MPNB18% (ref. 54)
AMLB11% (ref. 55)
MDSB11% (ref. 52)
CMMLB43% (ref. 52)

Wild-type ASXL1 is needed for normal
hematopoiesis56 and might be involved in
co-activation of transcription factors and
transcriptional repression.57,58

IDH1/IDH2 (Isocitrate dehydrogenase)
Exon 4 mutations29

2q33.3/15q26.1 PVB2% (ref. 29)
ETB1% (ref. 29)
PMFB4% (ref. 29)
BP-MPNB20% (ref. 29)
AMLB14% (ref. 59)
MDSB5% (ref. 30)

IDH mutations induce loss of activity for the
conversion of isocitrate to 2-ketoglutarate (2-KG) and
gain of function in the conversion of 2-KG to
2-hydroxyglutarate (2-HG).36,372-HG might be the
mediator of impaired TET2 function in cells with
mutant IDH expression.35

EZH2 (enhancer of zeste homolog 2)
Mutations involve several exons34

7q36.1 PVB3% (ref. 34)
PMFB7% (ref. 54)
MDSB6% (ref. 34,60)
CMMLB13% (ref. 34)
aCMLB13% (ref. 34)
HES/CELB3% (ref. 34)

Wild-type EZH2 is part of a histone
methyltransferase (polycomb repressive complex 2
associated with H3 Lys-27 trimethylation).
MPN-associated EZH2 mutations might have a
tumor suppressor activity,34 which contrasts with the
gain-of-function activity for lymphoma-associated
EZH2 mutations.33

DNMT3A (DNA cytosine
methyltransferase 3a)
Most frequent mutations affect amino
acid R882 (ref. 13)

2p23 PVB7% (ref. 6)
PMFB7% (ref. 5,6)
BP-MPNB14% (ref. 5,6)
AMLB22% (ref. 13)
MDSB8% (ref. 7)

DNA methyl transferases are essential
In establishing and maintaining DNA methylation
patterns in mammals.8,9

CBL (Casitas B-lineage lymphoma
proto-oncogene)
Exon 8/9 mutations61

11q23.3 PVBrare61

ETBrare61

MFB6% (ref. 61)

CBL is an E3 ubiquitin ligase that marks mutant
kinases for degradation. Transforming activity
requires loss of this function.62

IKZF1 (IKAROS family zinc-finger 1)
(mostly deletions including intragenic)63

7p12 CP-MPNBrare63

BP-MPNB19% (ref. 63)
IKZF1 is a transcription regulator and putative tumor
suppressor64

Abbreviations: AML, acute myeloid leukemia; BP-MPN, blast phase MPN; aCML, atypical chronic myeloid leukemia, BCR-ABL1-negative;
CMML, chronic myelomonocytic leukemia; CP-MPN, chronic phase MPN; ET, essential thrombocythemia; HES/CEL, hypereosinophilic
syndrome/chronic eosinophilic leukemia; MDS, myelodysplastic syndromes; MPN, myeloproliferative neoplasms; PMF, primary myelofibrosis;
PV, polycythemia vera; RARS-T, refractory anemia with ring sideroblasts; SM, systemic mastocytosis.
MF includes both PMF and post-ET/PV myelofibrosis.
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transformation, which can involve either mutated or unmutated
clones, in otherwise mutation-positive patients.18

Among the currently known MPN mutations, JAK2, MPL and
LNK mutations19–22 are the most noteworthy because: (i) they
share similar functional consequences that include constitutive
JAK–STAT activation and induction of MPN-like disease in
mice;19,20,22,23 (ii) JAK2 mutations are by far the most prevalent
and occur in virtually all patients with polycythemia vera24 and
in the majority of those with thrombocythemia or primary
myelofibrosis;25 and (iii) all three mutations are relatively
specific to MPN.26,27 However, the fact remains that none of
these three mutations can be traced back as the ancestral disease
clone and small molecule drugs that target their common
effector pathway have not produced clonal remissions.28

Disease-specific pathogenetic relevance for non-JAK2 MPN
mutations is further undermined by low mutational frequency
and promiscuity within the spectrum of myeloid neoplasms
(Table 1) (ref. 4). The latter often involve genes that are thought
to be epigenetically relevant, including TET2, ASXL1, IDH,
EZH2 and now, DNMT3A.29,30

Global DNA hypomethylation and regional hypermethylation
of promoters for tumor suppressor genes are typical findings in
cancer and are believed to contribute to genomic instability.31

Such epigenetic changes might result from mutations that affect
expression or function of DNA methyl transferases or other
epigenetically relevant proteins such as TET2, which catalyzes
conversion of 5-methylcytosine to 5-hydroxymethylcytosine32

or EZH2, which is part of a histone methyl transferase
complex.33 Consistent with this view, there is evidence to
suggest that DNMT3A12,13 and MPN-associated EZH2 (ref. 34)
mutations result in loss of function. Similarly, loss-of-function
mutations involving TET2 might result in decreased generation
of 5-hydroxymethylcytosine and, therefore, dysregulated regio-
nal hypermethylation. Furthermore, a recent paper suggested
that mutant IDH might mimic the epigenetic effect of mutant
TET2, by inhibiting the catalytic activity of wild-type TET2,
through generation of 2-hydroxyglutarate.35–37 Of note, JAK2
mutations might also have an epigenetic effect, the in vivo
pathogenetic relevance of which is uncertain.38,39

Taken together, it seems that we need to re-examine our
pathogenetic concept and treatment paradigm in BCR-ABL1-
negative MPN. It is possible that we might never find BCR-
ABL1-like mutations in these diseases, which undermines the
prospect of an imatinib-CML-like experience. What we cur-
rently have is a laundry list of ‘secondary’ mutations, most of
which can be operationally organized into JAK–STAT-relevant
and epigenetically relevant mutations. The former (i.e., JAK2,
MPL and LNK mutations) seem to be relatively specific to MPN
and, in that context, are likely to represent driver mutations. The
latter (i.e., TET2, EZH2, IDH, DNMT3A and possibly ASXL1)
might carry a broader, albeit nonspecific, pathogenetic rele-
vance that might include sustenance of the myeloid neoplasm
stem cell and clonal evolution. At the same time, we should not
be intimidated by the possibility that some mutations in either
MPN or MDS might simply represent passenger mutations,
regardless of what we think their functional relevance might be.

From a therapeutic standpoint, a better understanding of
pathway wiring rather than description of new secondary
mutations is more likely to lead to identification of a robust
drug target. The big picture also requires consideration of the
pathogenetic contribution of the interaction between host and
tumor and the phenotype modifying and prognostic impact of
abnormal cytokine expression.40 Consistent with the latter view,
cytokine modulation rather than direct cytotoxicity underlies the
predominant mechanism of action for some of the currently

available JAK inhibitors, which have recently been shown to
have palliative value in myelofibrosis.41,42 JAK–STAT is not the
only abnormal pathway in MPN and it might not even be the
most important for clonal evolution.18 Effective abrogation of
clonal myeloproliferation and leukemic transformation in MPN
might require therapeutic targeting of other pathways, in
addition to or instead of JAK–STAT.
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