Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene expression profiling in MDS and AML: potential and future avenues

Abstract

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD . Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007; 7: 118–129.

    CAS  PubMed  Google Scholar 

  2. Nimer SD . Myelodysplastic syndromes. Blood 2008; 111: 4841–4851.

    Article  CAS  PubMed  Google Scholar 

  3. Dohner K, Dohner H . Molecular characterization of acute myeloid leukemia. Haematologica 2008; 93: 976–982.

    PubMed  Google Scholar 

  4. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  5. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    CAS  PubMed  Google Scholar 

  6. Baldus CD, Bullinger L . Gene expression with prognostic implications in cytogenetically normal acute myeloid leukemia. Semin Oncol 2008; 35: 356–364.

    CAS  PubMed  Google Scholar 

  7. Wouters BJ, Lowenberg B, Delwel R . A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2009; 113: 291–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bullinger L, Valk PJ . Gene expression profiling in acute myeloid leukemia. J Clin Oncol 2005; 23: 6296–6305.

    CAS  PubMed  Google Scholar 

  9. Bacher U, Kohlmann A, Haferlach T . Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 2009; 145: 555–568.

    CAS  PubMed  Google Scholar 

  10. Kohlmann A, Schoch C, Dugas M, Rauhut S, Weninger F, Schnittger S et al. Pattern robustness of diagnostic gene expression signatures in leukemia. Genes Chromosomes Cancer 2005; 42: 299–307.

    CAS  PubMed  Google Scholar 

  11. Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol 2008; 142: 802–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kohlmann A, Haschke-Becher E, Wimmer B, Huber-Wechselberger A, Meyer-Monard S, Huxol H et al. Intraplatform reproducibility and technical precision of gene expression profiling in 4 laboratories investigating 160 leukemia samples: the DACH study. Clin Chem 2008; 54: 1705–1715.

    CAS  PubMed  Google Scholar 

  13. Nilsson B, Andersson A, Johansson M, Fioretos T . Cross-platform classification in microarray-based leukemia diagnostics. Haematologica 2006; 91: 821–824.

    CAS  PubMed  Google Scholar 

  14. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24: 1151–1161.

    CAS  PubMed  Google Scholar 

  15. Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood 2005; 106: 1189–1198.

    CAS  PubMed  Google Scholar 

  16. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Te Kronnie G, Bene MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009; 94: 131–134.

    PubMed  Google Scholar 

  18. Kohlmann A, Bullinger L, Thiede C, Schaich M, Schnittger S, Dohner K et al. Gene expression profiling in AML with normal karyotype can predict mutations for molecular markers and allows novel insights into perturbed biological pathways. Leukemia 2010; 24: 1216–1220.

    CAS  PubMed  Google Scholar 

  19. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    CAS  PubMed  Google Scholar 

  20. Bullinger L, Dohner K, Kranz R, Stirner C, Frohling S, Scholl C et al. An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML. Blood 2008; 111: 4490–4495.

    CAS  PubMed  Google Scholar 

  21. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    CAS  PubMed  Google Scholar 

  23. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    CAS  PubMed  Google Scholar 

  24. Wouters BJ, Jorda MA, Keeshan K, Louwers I, Erpelinck-Verschueren CA, Tielemans D et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood 2007; 110: 3706–3714.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luck SC, Russ AC, Du J, Gaidzik V, Schlenk RF, Pollack JR et al. KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol 2010; 148: 925–937.

    PubMed  Google Scholar 

  26. Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110: 1291–1300.

    CAS  PubMed  Google Scholar 

  27. Radmacher MD, Marcucci G, Ruppert AS, Mrozek K, Whitman SP, Vardiman JW et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 2006; 108: 1677–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raponi M, Lancet JE, Fan H, Dossey L, Lee G, Gojo I et al. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Blood 2008; 111: 2589–2596.

    CAS  PubMed  Google Scholar 

  29. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193–4201.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    CAS  PubMed  Google Scholar 

  31. Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX, Reinhardt D, Hollink IH, Arentsen-Peters ST et al. Evaluation of gene expression signatures predictive for cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 2011; 96: 221–230.

    Article  CAS  PubMed  Google Scholar 

  32. de Jonge HJ, Valk PJ, Veeger NJ, Ter Elst A, den Boer ML, Cloos J et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010; 116: 1747–1754.

    CAS  PubMed  Google Scholar 

  33. Bresolin S, Zecca M, Flotho C, Trentin L, Zangrando A, Sainati L et al. Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol 2010; 28: 1919–1927.

    PubMed  Google Scholar 

  34. Lacayo NJ, Meshinchi S, Kinnunen P, Yu R, Wang Y, Stuber CM et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 2004; 104: 2646–2654.

    CAS  PubMed  Google Scholar 

  35. Jo A, Tsukimoto I, Ishii E, Asou N, Mitani S, Shimada A et al. Age-associated difference in gene expression of paediatric acute myelomonocytic lineage leukaemia (FAB M4 and M5 subtypes) and its correlation with prognosis. Br J Haematol 2009; 144: 917–929.

    CAS  PubMed  Google Scholar 

  36. Roela RA, Carraro DM, Brentani HP, Kaiano JH, Simao DF, Guarnieiro R et al. Gene stage-specific expression in the microenvironment of pediatric myelodysplastic syndromes. Leuk Res 2007; 31: 579–589.

    CAS  PubMed  Google Scholar 

  37. Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 2007; 21: 2000–2009.

    CAS  PubMed  Google Scholar 

  38. Goellner S, Steinbach D, Schenk T, Gruhn B, Zintl F, Ramsay E et al. Childhood acute myelogenous leukaemia: association between PRAME, apoptosis- and MDR-related gene expression. Eur J Cancer 2006; 42: 2807–2814.

    CAS  PubMed  Google Scholar 

  39. Mano H . DNA micro-array analysis of myelodysplastic syndrome. Leuk Lymphoma 2006; 47: 9–14.

    CAS  PubMed  Google Scholar 

  40. Pellagatti A, Fidler C, Wainscoat JS, Boultwood J . Gene expression profiling in the myelodysplastic syndromes. Hematology 2005; 10: 281–287.

    CAS  PubMed  Google Scholar 

  41. Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 2006; 108: 337–345.

    CAS  PubMed  Google Scholar 

  42. Qian J, Chen Z, Wang W, Cen J, Xue Y . Gene expression profiling of the bone marrow mononuclear cells from patients with myelodysplastic syndrome. Oncol Rep 2005; 14: 1189–1197.

    CAS  PubMed  Google Scholar 

  43. Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu WM, Li R et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 2009; 114: 1063–1072.

    CAS  PubMed  Google Scholar 

  44. Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS ONE 2008; 3: e1970.

    PubMed  PubMed Central  Google Scholar 

  45. Nikpour M, Pellagatti A, Liu A, Karimi M, Malcovati L, Gogvadze V et al. Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br J Haematol 2010; 149: 844–854.

    CAS  PubMed  Google Scholar 

  46. Nilsson L, Eden P, Olsson E, Mansson R, Astrand-Grundstrom I, Strombeck B et al. The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 2007; 110: 3005–3014.

    CAS  PubMed  Google Scholar 

  47. Pellagatti A, Hellstrom-Lindberg E, Giagounidis A, Perry J, Malcovati L, Della Porta MG et al. Haploinsufficiency of RPS14 in 5q- syndrome is associated with deregulation of ribosomal- and translation-related genes. Br J Haematol 2008; 142: 57–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L et al. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 2007; 139: 578–589.

    CAS  PubMed  Google Scholar 

  49. Sridhar K, Ross DT, Tibshirani R, Butte AJ, Greenberg PL . Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood 2009; 114: 4847–4858.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 2010; 24: 756–764.

    CAS  PubMed  Google Scholar 

  51. Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M et al. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 2005; 19: 402–409.

    CAS  PubMed  Google Scholar 

  52. Wang ZY, Chen Z . Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008; 111: 2505–2515.

    CAS  PubMed  Google Scholar 

  53. Grimwade D, Mistry AR, Solomon E, Guidez F . Acute promyelocytic leukemia: a paradigm for differentiation therapy. Cancer Treat Res 2010; 145: 219–235.

    CAS  PubMed  Google Scholar 

  54. Schlenk RF, Frohling S, Hartmann F, Fischer JT, Glasmacher A, del Valle F et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004; 18: 1798–1803.

    CAS  PubMed  Google Scholar 

  55. Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 2005; 104: 2717–2725.

    CAS  PubMed  Google Scholar 

  56. Estey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/− all-trans retinoic acid +/− granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 1999; 93: 2478–2484.

    CAS  PubMed  Google Scholar 

  57. Meester-Smoor MA, Janssen MJ, Grosveld GC, de Klein A, van IWF, Douben H et al. MN1 affects expression of genes involved in hematopoiesis and can enhance as well as inhibit RAR/RXR-induced gene expression. Carcinogenesis 2008; 29: 2025–2034.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Glasow A, Barrett A, Petrie K, Gupta R, Boix-Chornet M, Zhou DC et al. DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood 2008; 111: 2374–2377.

    CAS  PubMed  Google Scholar 

  59. Walsby EJ, Gilkes AF, Tonks A, Darley RL, Mills KI . FUS expression alters the differentiation response to all-trans retinoic acid in NB4 and NB4R2 cells. Br J Haematol 2007; 139: 94–97.

    CAS  PubMed  Google Scholar 

  60. Tagliafico E, Tenedini E, Manfredini R, Grande A, Ferrari F, Roncaglia E et al. Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 2006; 20: 1751–1758.

    CAS  PubMed  Google Scholar 

  61. Schlenk RF, Dohner K, Kneba M, Gotze K, Hartmann F, Del Valle F et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 2009; 94: 54–60.

    CAS  PubMed  Google Scholar 

  62. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006; 355: 1456–1465.

    CAS  PubMed  Google Scholar 

  63. Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 2008; 111: 86–93.

    CAS  PubMed  Google Scholar 

  64. Ebert BL, Galili N, Tamayo P, Bosco J, Mak R, Pretz J et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med 2008; 5: e35.

    PubMed  PubMed Central  Google Scholar 

  65. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    PubMed  Google Scholar 

  66. Gilliland DG, Jordan CT, Felix CA . The molecular basis of leukemia. Hematol Am Soc Hematol Educ Program 2004; 80–97.

    Google Scholar 

  67. Chang JT, Carvalho C, Mori S, Bild AH, Gatza ML, Wang Q et al. A genomic strategy to elucidate modules of oncogenic pathway signaling networks. Mol Cell 2009; 34: 104–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Corsello SM, Roti G, Ross KN, Chow KT, Galinsky I, DeAngelo DJ et al. Identification of AML1-ETO modulators by chemical genomics. Blood 2009; 113: 6193–6205.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 2008; 111: 5654–5662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marstrand TT, Borup R, Willer A, Borregaard N, Sandelin A, Porse BT et al. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 2010; 24: 1265–1275.

    CAS  PubMed  Google Scholar 

  71. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    CAS  PubMed  Google Scholar 

  72. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    CAS  PubMed  Google Scholar 

  74. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P et al. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 2009; 27: 3198–3204.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    CAS  PubMed  Google Scholar 

  77. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maciejewski JP, Mufti GJ . Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood 2008; 112: 965–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rucker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Frohling S et al. Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol 2006; 24: 3887–3894.

    PubMed  Google Scholar 

  80. Bullinger L, Kronke J, Schon C, Radtke I, Urlbauer K, Botzenhardt U et al. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia 2010; 24: 438–449.

    CAS  PubMed  Google Scholar 

  81. Radtke I, Mullighan CG, Ishii M, Su X, Cheng J, Ma J et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci USA 2009; 106: 12944–12949.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA 2009; 106: 12950–12955.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Plass C, Oakes C, Blum W, Marcucci G . Epigenetics in acute myeloid leukemia. Semin Oncol 2008; 35: 378–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR et al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood 2010; 115: 636–642.

    CAS  PubMed  Google Scholar 

  86. Neff T, Armstrong SA . Chromatin maps, histone modifications and leukemia. Leukemia 2009; 23: 1243–1251.

    CAS  PubMed  Google Scholar 

  87. Rees-Unwin KS, Morgan GJ, Davies FE . Proteomics and the haematologist. Clin Lab Haematol 2004; 26: 77–86.

    CAS  PubMed  Google Scholar 

  88. Williamson AJ, Smith DL, Blinco D, Unwin RD, Pearson S, Wilson C et al. Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics 2008; 7: 459–472.

    CAS  PubMed  Google Scholar 

  89. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood 2004; 104: 1314–1323.

    CAS  PubMed  Google Scholar 

  90. Jin L, Xiao CL, Lu CH, Xia M, Xing GW, Xiong S et al. Transcriptomic and proteomic approach to studying SNX-2112-induced K562 cells apoptosis and anti-leukemia activity in K562-NOD/SCID mice. FEBS Lett 2009; 583: 1859–1866.

    CAS  PubMed  Google Scholar 

  91. Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A et al. A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol Cell Proteomics 2010; 9: 742–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M et al. Functional proteomic profiling of AML predicts response and survival. Blood 2009; 113: 154–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Weissinger EM, Schiffer E, Hertenstein B, Ferrara JL, Holler E, Stadler M et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 2007; 109: 5511–5519.

    CAS  PubMed  Google Scholar 

  94. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8: 393–406.

    CAS  PubMed  Google Scholar 

  95. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 2004; 3: 960–969.

    CAS  PubMed  Google Scholar 

  96. Mayr C, Bartel DP . Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138: 673–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Choughule A, Polampalli S, Amre P, Shinde S, Banavali S, Prabhash K et al. Identification of PML/RARalpha fusion gene transcripts that showed no t(15;17) with conventional karyotyping and fluorescent in situ hybridization. Genet Mol Res 2009; 8: 1–7.

    CAS  PubMed  Google Scholar 

  98. Rucker FG, Bullinger L, Gribov A, Sill M, Schlenk RF, Lichter P et al. Molecular characterization of AML with ins(21;8)(q22;q22q22) reveals similarity to t(8;21) AML. Genes Chromosomes Cancer 2011; 50: 51–58.

    PubMed  Google Scholar 

  99. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    PubMed  Google Scholar 

  100. Schwind S, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Holland KB et al. BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116: 5660–5669.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Krivtsov AV, Sinha AU, Stubbs MC, Kung A, Armstrong S . Cell of origin influences leukemia stem cell phenotype. Blood (ASH Annu Meet Abstr) 2009; 114: 3459.

    Google Scholar 

  102. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 2009; 137: 821–834.

    CAS  PubMed  Google Scholar 

  103. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA 2009; 106: 3396–3401.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is based on the joint research activities under the framework of the European Program for Cooperation in Science and Technology (COST, Action BM0801, WG1) and the European LeukemiaNet funded by the 6th Framework Program of the European Community (WP13 Gene Profiling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Bullinger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theilgaard-Mönch, K., Boultwood, J., Ferrari, S. et al. Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 25, 909–920 (2011). https://doi.org/10.1038/leu.2011.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.48

Keywords

This article is cited by

Search

Quick links