Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells

Abstract

ROR1 is a receptor tyrosine kinase (RTK) recently identified to be overexpressed at the gene and protein levels in chronic lymphocytic leukemia (CLL). Monoclonal antibodies (MAbs) against RTKs have been successfully applied for therapy of solid tumors. We generated five MAbs against the Ig (n=1), cysteine-rich (CRD) (n=2) and kringle (KNG) (n=2) domains, respectively, of the extracellular part of ROR1. All CLL patients (n=20) expressed ROR1 on the surface of the leukemic cells. A significantly higher frequency of ROR1 expression was found in patients with progressive versus non-progressive disease, and in those with unmutated versus mutated IgVH genes. All five MAbs alone induced apoptosis in the absence of complement or added effector cells (Annexin-V and MTT, as well as cleavage of poly-(ADP ribose)-polymerase, caspase-8 and caspase-9) of CLL cells but not of normal B cells. Most effective were MAbs against CRD and KNG, significantly superior to rituximab (P<0.005). Cross-linking of anti-ROR1 MAbs using the F(ab′)2 fragments of anti-Fc antibodies significantly augmented apoptosis. Two of the MAbs induced complement-dependent cytotoxicity (CDC) similar to that of rituximab and one anti-ROR1 MAb (KNG) (IgG1) showed killing activity by antibody-dependent cellular cytotoxicity. The identified ROR1 epitopes may provide a basis for generating human ROR1 MAbs for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al.. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  3. Cheson BD . Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010; 28: 3525–3530.

    Article  CAS  PubMed  Google Scholar 

  4. Osterborg A, Foa R, Bezares RF, Dearden C, Dyer MJ, Geisler C, al . Management guidelines for the use of alemtuzumab in chronic lymphocytic leukemia. Leukemia 2009; 23: 1980–1988.

    Article  CAS  PubMed  Google Scholar 

  5. Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1749–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  7. Robak T, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J, Catalano J et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1756–1765.

    Article  CAS  PubMed  Google Scholar 

  8. Baselga J, Swain SM . Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 2009; 9: 463–475.

    Article  CAS  PubMed  Google Scholar 

  9. Siwak DR, Carey M, Hennessy BT, Nguyen CT, McGahren Murray MJ, Nolden L et al. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol 2010; 2010: 568938.

    Article  PubMed  Google Scholar 

  10. Hudis CA . Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 2007; 357: 39–51.

    Article  CAS  PubMed  Google Scholar 

  11. Kim R . Cetuximab and panitumumab: are they interchangeable? Lancet Oncol 2009; 10: 1140–1141.

    Article  PubMed  Google Scholar 

  12. Green JL, Kuntz SG, Sternberg PW . Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol 2008; 18: 536–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Minami Y, Oishi I, Endo M, Nishita M . Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239: 1–15.

    CAS  PubMed  Google Scholar 

  14. Robinson DR, Wu YM, Lin SF . The protein tyrosine kinase family of the human genome. Oncogene 2000; 19: 5548–5557.

    Article  CAS  PubMed  Google Scholar 

  15. Yoda A, Oishi I, Minami Y . Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res 2003; 23: 1–15.

    Article  CAS  PubMed  Google Scholar 

  16. Kaucka M, Krejci P, Plevova K, Pavlova S, Prochazkova J, Janovska P et al. Post-translational modifications regulate signalling by Ror1. Acta Physiol (Oxf) 2011; 203: 351–362.

    Article  CAS  Google Scholar 

  17. Masiakowski P, Carroll RD . A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem 1992; 267: 26181–26190.

    CAS  PubMed  Google Scholar 

  18. Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW . Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2010; 2: 53–70.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Rubin B, Bodine PV, Billiard J . Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem 2008; 105: 497–502.

    Article  CAS  PubMed  Google Scholar 

  20. Paganoni S, Ferreira A . Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. J Cell Sci 2005; 118: 433–446.

    Article  CAS  PubMed  Google Scholar 

  21. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A . Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 2010; 29: 41–54.

    Article  CAS  PubMed  Google Scholar 

  22. Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res 2008; 14: 396–404.

    Article  CAS  PubMed  Google Scholar 

  23. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer 2008; 123: 1190–1195.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA 2008; 105: 3047–3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezvany MR, Jeddi-Tehrani M, Biberfeld P, Soderlund J, Mellstedt H, Osterborg A et al. Dendritic cells in patients with non-progressive B-chronic lymphocytic leukaemia have a normal functional capability but abnormal cytokine pattern. Br J Haematol 2001; 115: 263–271.

    Article  CAS  PubMed  Google Scholar 

  26. Wang CM, Jia ZJ, Zheng RL . The effect of 17 sesquiterpenes on cell viability and telomerase activity in the human ovarian cancer cell line HO-8910. Planta Med 2007; 73: 180–184.

    Article  CAS  PubMed  Google Scholar 

  27. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004; 104: 1793–1800.

    Article  CAS  PubMed  Google Scholar 

  28. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  PubMed  Google Scholar 

  29. Voltan R, di Iasio MG, Bosco R, Valeri N, Pekarski Y, Tiribelli M et al. Nutlin-3 downregulates the expression of the oncogene TCL1 in primary B chronic lymphocytic leukemic cells. Clin Cancer Res 2011; 17: 5649–5655.

    Article  CAS  PubMed  Google Scholar 

  30. Golay J, Manganini M, Rambaldi A, Introna M . Effect of alemtuzumab on neoplastic B cells. Haematologica 2004; 89: 1476–1483.

    CAS  PubMed  Google Scholar 

  31. Barna G, Mihalik R, Timar B, Tombol J, Csende Z, Sebestyen A et al. ROR1 expression is not a unique marker of CLL. Hematol Oncol 2010; 29: 17–21.

    Article  Google Scholar 

  32. Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 2010; 116: 4532–4541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mellstedt H, Hojjat-Farsangi M, Mansouri L, Osterborg A, Rabbani H . ROR1 isoforms are constitutively phosphorylated in chronic lymphocytic leukemia (CLL)—a survival factor for CLL cells. Abstract ASH San Diego USA, December 10–13 2011.

  34. Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol 2010; 151: 327–335.

    Article  CAS  PubMed  Google Scholar 

  35. Yarden Y, Ullrich A . Growth factor receptor tyrosine kinases. Annu Rev Biochem 1988; 57: 443–478.

    Article  CAS  PubMed  Google Scholar 

  36. Reddy UR, Phatak S, Pleasure D . Human neural tissues express a truncated Ror1 receptor tyrosine kinase, lacking both extracellular and transmembrane domains. Oncogene 1996; 13: 1555–1559.

    CAS  PubMed  Google Scholar 

  37. Wang L, Shao YY, Ballock RT . Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes. J Bone Miner Res 2009; 24: 265–273.

    Article  CAS  PubMed  Google Scholar 

  38. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  39. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  PubMed  Google Scholar 

  40. Masucci G, Lindemalm C, Frodin JE, Hagstrom B, Mellstedt H . Effect of human blood mononuclear cell populations in antibody dependent cellular cytotoxicity (ADCC) using two murine (CO17-1A and Br55-2) and one chimeric (17-1A) monoclonal antibodies against a human colorectal carcinoma cell line (SW948). Hybridoma 1988; 7: 429–440.

    Article  CAS  PubMed  Google Scholar 

  41. Duncan AR, Winter G . The binding site for C1q on IgG. Nature 1988; 332: 738–740.

    Article  CAS  PubMed  Google Scholar 

  42. Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D . Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol 1998; 51: 364–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rossmann ED, Lenkei R, Lundin J, Mellstedt H, Osterborg A . Performance of calibration standards for antigen quantitation with flow cytometry in chronic lymphocytic leukemia. Cytometry B Clin Cytom 2007; 72: 450–457.

    Article  PubMed  Google Scholar 

  44. Uhrmacher S, Schmidt C, Erdfelder F, Poll-Wolbeck SJ, Gehrke I, Hallek M et al. Use of the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a diagnostic tool in chronic lymphocytic leukemia (CLL). Leuk Res 2011; 29: 1360–1366.

    Article  Google Scholar 

  45. Ghetie MA, Bright H, Vitetta ES . Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. Blood 2001; 97: 1392–1398.

    Article  CAS  PubMed  Google Scholar 

  46. Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL, Shen GL et al. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 2002; 8: 1720–1730.

    CAS  PubMed  Google Scholar 

  47. Stein R, Qu Z, Chen S, Rosario A, Shi V, Hayes M et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and Its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkins lymphoma. Clin Cancer Res 2004; 10: 2868–2878.

    Article  CAS  PubMed  Google Scholar 

  48. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006; 177: 362–371.

    Article  CAS  PubMed  Google Scholar 

  49. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J . The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 2002; 99: 1314–1319.

    Article  CAS  PubMed  Google Scholar 

  50. Weiner LM, Surana R, Wang S . Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10: 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang J, Baskar S, Kwong KY, Kennedy MG, Wiestner A, Rader C . Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies. PLoS One 2011; 6: e21018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the CLL Global Research Foundation, the EUCAAD 200755 project funded under the auspices of the EU Seventh Framework Programme, the Cancer and Allergy Foundation, the Swedish Research Council/SIDA/SAREC, the Iranian Ministry of Health and Medical Education, the Swedish Cancer Society, the Cancer Society in Stockholm, the King Gustaf Vth Jubilee Fund, Vinnova, the Karolinska Institutet Foundations and the Stockholm County Council.

Author contributions

AHDM and MHF performed the experiments, analyzed data and wrote the paper. ASK performed experiments and reviewed the manuscript. MMA, AAB, RG, ARM and RH produced MAbs. MJH and FS designed and produced MAbs and reviewed the manuscript. AÖ provided clinical material, analyzed data and wrote the paper. HR designed the study, performed experiments, analyzed data and wrote the paper. HM designed and supervised the study, provided clinical material, analyzed data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rabbani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daneshmanesh, A., Hojjat-Farsangi, M., Khan, A. et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia 26, 1348–1355 (2012). https://doi.org/10.1038/leu.2011.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.362

Keywords

This article is cited by

Search

Quick links