Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Landscape of TET2 mutations in acute myeloid leukemia

Abstract

We investigated ten–eleven translocation 2 (TET2) mutations in acute myeloid leukemia (AML), their correlation with other gene mutations and prognostic value. By deep-sequencing, 131 somatic TET2 mutations were identified in 87/318 (27.4%) patients. Of 87 mutated cases, 44 (50.6%) carried two mutations. TET2 mutations were concomitantly observed with mutations in NPM1, FLT3-ITD, FLT3-TKD, JAK2, RUNX1, CEBPA, CBL and KRAS. However, TET2 mutations rarely concomitantly occurred with IDH1mut or IDH2mut (2/251 or 0/184; P=0.046 and P=0.003, respectively). TET2 mutations were associated with normal karyotype AML (CN-AML) (62/206 (30.1%) CN-AML vs 20/107 (18.7%) aberrant karyotype; P=0.031), higher white blood cell count (mean 65.3 vs 40.3 × 109/l, P=0.023), lower platelet count (mean 68.6 vs 92.4 × 109/l, P=0.03) and higher age (67.5 vs 65.2 years, P<0.001). Survival analyses were restricted to de novo CN-AML patients (n=165) and showed inferior event-free survival (EFS) of TET2 mutations compared with TET2wt (median: 6.7 vs 18.7 months, P=0.009). This negative effect of TET2 mutation on EFS was particularly observed in patients 65 years (median: 8.9 months vs not reached (n.r.), P=0.027) as well as in patients of the European LeukemiaNet favorable-risk subgroup, that is, patients harboring mutated CEBPA and/or mutated NPM1 without FLT3-ITD (median: 10.3 vs 41.3 months, P=0.048). These data support a role for TET2 as an important prognostic biomarker in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  Google Scholar 

  2. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  Google Scholar 

  3. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  Google Scholar 

  4. Marcucci G, Haferlach T, Dohner H . Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 2011; 29: 475–486.

    Article  CAS  Google Scholar 

  5. McDermott U, Downing JR, Stratton MR . Genomics and the continuum of cancer care. N Engl J Med 2011; 364: 340–350.

    Article  CAS  Google Scholar 

  6. Arber DA, Brunning RD, Le Beau MM, Falini B, Vardiman JW, Porwit A et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow S, Campo E, Harris NL (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue. International Agency for Research on Cancer. World Health Organization: Geneva, Switzerland, 2008, pp 110–123.

    Google Scholar 

  7. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  CAS  Google Scholar 

  8. Bacher U, Schnittger S, Haferlach C, Haferlach T . Molecular diagnostics in acute leukemias. Clin Chem Lab Med 2009; 47: 1333–1341.

    Article  CAS  Google Scholar 

  9. Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T . IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 2010; 116: 5486–5496.

    Article  CAS  Google Scholar 

  10. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117: 2348–2357.

    Article  CAS  Google Scholar 

  11. Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  Google Scholar 

  12. Delhommeau F, Dupont S, James C, Masse A, le Couedic JP, Della Valle V et al. TET2 is a novel tumor suppressor gene inactivated in myeloproliferative neoplasms: identification of a pre-JAK2V617F event. Blood 2008; 112: lba*3.

    Google Scholar 

  13. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  Google Scholar 

  14. Mullighan CG . TET2 mutations in myelodysplasia and myeloid malignancies. Nat Genet 2009; 41: 766–767.

    Article  CAS  Google Scholar 

  15. Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gaken J, Lea NC et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 2010; 116: 3923–3932.

    Article  CAS  Google Scholar 

  16. Mohamedali AM, Smith AE, Gaken J, Lea NC, Mian SA, Westwood NB et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009; 27: 4002–4006.

    Article  CAS  Google Scholar 

  17. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y . Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466: 1129–1133.

    Article  CAS  Google Scholar 

  18. van Etten RA, Koschmieder S, Delhommeau F, Perrotti D, Holyoake T, Pardanani A et al. The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica 2011; 96: 590–601.

    Article  Google Scholar 

  19. Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, la-Valle V, Picard F et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009; 114: 3285–3291.

    Article  CAS  Google Scholar 

  20. Nibourel O, Kosmider O, Cheok M, Boissel N, Renneville A, Philippe N et al. Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood 2010; 116: 1132–1135.

    Article  CAS  Google Scholar 

  21. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  22. Metzeler KH, Maharry K, Radmacher MD, Mrozek K, Margeson D, Becker H et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2011; 29: 1373–1381.

    Article  Google Scholar 

  23. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  Google Scholar 

  24. Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25: 1840–1848.

    Article  CAS  Google Scholar 

  25. Klein HU, Bartenhagen C, Kohlmann A, Grossmann V, Ruckert C, Haferlach T et al. R453Plus1Toolbox: an R/Bioconductor package for analyzing Roche 454 Sequencing data. Bioinformatics 2011; 27: 1162–1163.

    Article  CAS  Google Scholar 

  26. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  Google Scholar 

  27. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood 2009; 114: 2220–2231.

    Article  CAS  Google Scholar 

  28. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  Google Scholar 

  29. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  Google Scholar 

  30. Weisser M, Kern W, Schoch C, Hiddemann W, Haferlach T, Schnittger S . Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy. Haematologica 2005; 90: 881–889.

    CAS  PubMed  Google Scholar 

  31. Schnittger S, Bacher U, Kern W, Schroder M, Haferlach T, Schoch C . Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E. Leukemia 2006; 20: 2195–2197.

    Article  CAS  Google Scholar 

  32. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  Google Scholar 

  33. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  Google Scholar 

  34. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  Google Scholar 

  35. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009; 114: 144–147.

    Article  CAS  Google Scholar 

  36. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  Google Scholar 

  37. Kosmider O, Delabesse E, Mas VM, Cornillet-Lefebvre P, Blanchet O, Delmer A et al. TET2 mutations in secondary acute myeloid leukemias: a French retrospective study. Haematologica 2011; 96: 1059–1063.

    Article  CAS  Google Scholar 

  38. Bejar R, Stevenson K, bdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  Google Scholar 

  39. Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009; 23: 905–911.

    Article  CAS  Google Scholar 

  40. Langemeijer SM, Jansen JH, Hooijer J, van HP, Stevens-Linders E, Massop M et al. TET2 mutations in childhood leukemia. Leukemia 2011; 25: 189–192.

    Article  CAS  Google Scholar 

  41. Nibourel O, Kosmider O, Cheok M, Boissel N, Renneville A, Philippe N et al. Association of TET2 alterations with NPM1 mutations and prognostic value in de novo acute myeloid leukemia (AML). Blood (ASH Annu Meet Abstr) 2009, 163a.

  42. Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, Jooste V, Vey N et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 2009; 94: 1676–1681.

    Article  CAS  Google Scholar 

  43. Wagner K, Damm F, Gohring G, Gorlich K, Heuser M, Schafer I et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 2010; 28: 2356–2364.

    Article  CAS  Google Scholar 

  44. Preudhomme C, Renneville A, Bourdon V, Philippe N, Roche-Lestienne C, Boissel N et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 2009; 113: 5583–5587.

    Article  CAS  Google Scholar 

  45. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739–744.

    Article  CAS  Google Scholar 

  46. Figueroa ME, bdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kohlmann.

Ethics declarations

Competing interests

CH, TH, WK, and SS are part-owners of the MLL Munich Leukemia Laboratory GmbH. SW, TA, VG, AnKo, NN, CE, FD, AF and AlKo are employed by MLL Munich Leukemia Laboratory.

AUTHOR CONTRIBUTIONS

SW, AlKo and SS designed the study. SW, VG, CE, FD and AF performed research and generated data. SW, TA, AnKo, NN and AlKo analyzed and interpreted the data. SW wrote the paper.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissmann, S., Alpermann, T., Grossmann, V. et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26, 934–942 (2012). https://doi.org/10.1038/leu.2011.326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.326

Keywords

This article is cited by

Search

Quick links