Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia

Abstract

MLL-rearranged infant acute lymphoblastic leukemia (ALL) is an aggressive type of leukemia characterized by a unique gene-expression profile. We uncovered that the activation of particular (proto-onco)genes is mediated by promoter hypomethylation. In search for therapeutic agents capable of targeting these potential cancer-promoting genes, we applied connectivity mapping on a gene expression signature based on the genes most significantly hypomethylated in t(4;11)-positive infant ALL as compared with healthy bone marrows. This analysis revealed histone deacetylase (HDAC) inhibitors as suitable candidates to reverse the unfavorable gene signature. We show that HDAC inhibitors effectively induce leukemic cell death in t(4;11)-positive primary infant ALL cells, accompanied by downregulation of MYC, SET, RUNX1, RAN as well as the MLL–AF4 fusion product. Furthermore, DNA methylation was restored after HDAC inhibitor exposure. Our data underlines the essential role for epigenetic de-regulation in MLL-rearranged ALL. Furthermore, we show, for the first time, that connectivity mapping can indirectly be applied on DNA methylation patterns, providing a rationale for HDAC inhibition in t(4;11)-positive leukemias. Given the presented potential of HDAC inhibitors to target important proto-oncogenes including the leukemia-specific MLL fusion in vitro, these agents should urgently be tested in in vivo models and subsequent clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    Article  CAS  PubMed  Google Scholar 

  4. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21: 633–641.

    Article  CAS  PubMed  Google Scholar 

  6. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    Article  CAS  PubMed  Google Scholar 

  7. Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ . Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 2004; 6: 437–443.

    Article  CAS  PubMed  Google Scholar 

  8. Gan T, Jude CD, Zaffuto K, Ernst P . Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia 2010; 24: 1732–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  10. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  11. Bitoun E, Oliver PL, Davies KE . The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92–106.

    Article  CAS  PubMed  Google Scholar 

  12. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    Article  CAS  PubMed  Google Scholar 

  13. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  16. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  17. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  18. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamb J . The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54–60.

    Article  CAS  PubMed  Google Scholar 

  20. Stam RW, den Boer ML, Schneider P, Meier M, Beverloo HB, Pieters R . D-HPLC analysis of the entire FLT3 gene in MLL rearranged and hyperdiploid acute lymphoblastic leukemia. Haematologica 2007; 92: 1565–1568.

    Article  CAS  PubMed  Google Scholar 

  21. Smyth GK . Limma: linear models for microarray data. In: Gentleman VC SD R, Irizarry R, Huber W (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: New York, 2005, pp 397–420.

    Chapter  Google Scholar 

  22. Benjamini Y HY . Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  23. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . GenePattern 2.0. Nat Genet 2006; 38: 500–501.

    Article  CAS  PubMed  Google Scholar 

  24. Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 2010; 115: 4798–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  26. Pieters R . Infant acute lymphoblastic leukemia: lessons learned and future directions. Curr Hematol Malig Rep 2009; 4: 167–174.

    Article  PubMed  Google Scholar 

  27. Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 2006; 10: 321–330.

    Article  CAS  PubMed  Google Scholar 

  28. Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica 2004; 89: 419–426.

    CAS  PubMed  Google Scholar 

  29. Stams WA, den Boer ML, Beverloo HB, Kazemier KM, van Wering ER, Janka-Schaub GE et al. Effect of the histone deacetylase inhibitor depsipeptide on B-cell differentiation in both TEL-AML1-positive and negative childhood acute lymphoblastic leukemia. Haematologica 2005; 90: 1697–1699.

    CAS  PubMed  Google Scholar 

  30. Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T . Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 2008; 22: 1369–1379.

    Article  PubMed  Google Scholar 

  31. Greaves MF . Infant leukaemia biology, aetiology and treatment. Leukemia 1996; 10: 372–377.

    CAS  PubMed  Google Scholar 

  32. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  33. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  PubMed  Google Scholar 

  34. Bach C, Buhl S, Mueller D, Garcia-Cuellar MP, Maethner E, Slany RK . Leukemogenic transformation by HOXA cluster genes. Blood 2010; 115: 2910–2918.

    Article  CAS  PubMed  Google Scholar 

  35. Cervoni N, Detich N, Seo SB, Chakravarti D, Szyf M . The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002; 277: 25026–25031.

    Article  CAS  PubMed  Google Scholar 

  36. Blyth K, Cameron ER, Neil JC . The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 2005; 5: 376–387.

    Article  CAS  PubMed  Google Scholar 

  37. Rensen WM, Mangiacasale R, Ciciarello M, Lavia P . The GTPase Ran: regulation of cell life and potential roles in cell transformation. Front Biosci 2008; 13: 4097–4121.

    Article  CAS  PubMed  Google Scholar 

  38. Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 1997; 231: 509–513.

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Wang M, Li M, Wang D, Rao Q, Wang Y et al. Expression and role of DJ-1 in leukemia. Biochem Biophys Res Commun 2008; 375: 477–483.

    Article  CAS  PubMed  Google Scholar 

  40. Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, Fackler OT et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 2007; 21: 1478–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 2003; 17: 2249–2250.

    Article  CAS  PubMed  Google Scholar 

  44. Popov N, Schulein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    Article  CAS  PubMed  Google Scholar 

  45. Parada LF, Land H, Chen A, Morganstern J, Weinberg RA . Cooperation between cellular oncogenes in the transformation of primary rat embryo fibroblasts. Prog Med Virol 1985; 32: 115–128.

    CAS  PubMed  Google Scholar 

  46. O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006; 24: 166–173.

    Article  PubMed  Google Scholar 

  47. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009; 27: 5410–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006; 12: 4628–4635.

    Article  CAS  PubMed  Google Scholar 

  49. Burbury KL, Bishton MJ, Johnstone RW, Dickinson MJ, Szer J, Prince HM . MLL-aberrant leukemia: complete cytogenetic remission following treatment with a histone deacetylase inhibitor (HDACi). Ann Hematol 2010; 90: 847–849.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express gratitude to the members and participating hospitals of the INTERFANT-99 study for supporting our research by providing leukemic samples. Members of INTERFANT-99 are Campbell M (PINDA), Felice M (Argentina), Ferster A (CLCG), Hann I and Vora A (UKCCSG), Hovi L (NOPHO), Janka-Schaub G (COALL), Li CK. (Hong Kong), Mann G (BFM-A), LeBlanc T (FRALLE), Pieters R (DCOG), de Rossi G and Biondi A (AIEOP), Rubnitz J (SJCRH), Schrappe M (BFM-G), Silverman L (DFCI), Stary J (CPH), Suppiah R (ANZCHOG), Szczepanski T (PPLLSG), and Valsecchi M and de Lorenzo P (CORS). In addition, we thank Rolinda Stigter and Henk Westerhof from the Diagnostic Laboratory in the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands, for their assistance in providing normal pediatric bone marrow samples. This study was financially supported by grants from the Sophia Foundation for Medical Research (SSWO grants 495 and 600), and RWS was financially supported by the Dutch Cancer Society (EMCR 2005–2662). The institutions financially supporting this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Author contributions

DJPMS designed and performed research and wrote the paper. PS, LS and HO performed research. OW reviewed the paper. RWS and RP designed and guided research, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W Stam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpel, D., Schneider, P., Seslija, L. et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia 26, 682–692 (2012). https://doi.org/10.1038/leu.2011.278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.278

Keywords

This article is cited by

Search

Quick links