Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Inhibition of Myb-dependent gene expression by the sesquiterpene lactone mexicanin-I

Abstract

The c-myb proto-oncogene encodes a transcription factor that is highly expressed in the progenitor cells of the hematopoietic system, where it regulates the expression of genes important for lineage determination, cell proliferation and differentiation. There is strong evidence that deregulation of c-myb expression is involved in the development of human tumors, particularly of certain types of leukemia, and breast and colon cancer. The c-Myb protein is therefore an interesting therapeutic target. Here, we have investigated the potential of natural sesquiterpene lactones (STLs), a class of compounds that are active constituents of a variety of medicinal plants, to suppress Myb-dependent gene expression. We have developed a test system that allows screening of compounds for their ability to interfere with the activation of Myb target genes. Using this assay system, we have identified the STL mexicanin-I as the first cell-permeable, low-molecular-weight inhibitor of Myb-induced gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lipsick JS, Wang DM . Transformation by v-Myb. Oncogene 1999; 18: 3047–3055.

    Article  CAS  Google Scholar 

  2. Ramsay RJ, Gonda TJ . Myb function in normal and cancer cells. Nat Rev Cancer 2008; 8: 523–534.

    Article  CAS  Google Scholar 

  3. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65: 677–689.

    Article  CAS  Google Scholar 

  4. Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . Progression through key stages of haemtopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003; 22: 4478–4488.

    Article  CAS  Google Scholar 

  5. Bender TP, Kremer CS, Kraus M, Buch T, Rajewsky K . Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 2004; 5: 721–729.

    Article  CAS  Google Scholar 

  6. Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL et al. Suppressor screen in Mpl/ mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci USA 2004; 101: 6553–6558.

    Article  CAS  Google Scholar 

  7. Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 2005; 8: 153–166.

    Article  CAS  Google Scholar 

  8. Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP . c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 2005; 23: 275–286.

    Article  CAS  Google Scholar 

  9. Sitzmann J, Noben-Trauth K, Klempnauer KH . Expression of mouse c-myb during embryonic development. Oncogene 1995; 11: 2273–2279.

    CAS  PubMed  Google Scholar 

  10. Malaterre J, Carpinelli M, Ernst M, Alexander W, Cooke M, Sutton S et al. c-Myb is required for progenitor cell homeostasis in colonic crypts. Proc Natl Acad Sci USA 2007; 104: 3829–3834.

    Article  CAS  Google Scholar 

  11. Rushton JJ, Davis LM, Lei W, Mo X, Leutz A, Ness SA . Distinct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins. Oncogene 2003; 22: 308–313.

    Article  CAS  Google Scholar 

  12. Liu F, Lei W, O’Rourke JP, Ness SA . Oncogenic mutations cause dramatic, qualitative changes in the transcriptional activity of c-Myb. Oncogene 2006; 2: 5795–5805.

    Google Scholar 

  13. Berge T, Matre V, Brendeford EM, Saether T, Lüscher B, Gabrielsen OS . Revisiting a selection of target genes for the hematopoietic transcription factor c-Myb using chromatin immunoprecipitation and c-Myb knockdown. Blood Cells Mol Dis 2007; 39: 278–286.

    Article  CAS  Google Scholar 

  14. Ness SA, Marknell A, Graf T . The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 1989; 59: 1115–1125.

    Article  CAS  Google Scholar 

  15. Burk O, Mink S, Ringwald M, Klempnauer K-H . Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors. EMBO J 1993; 12: 2027–2038.

    Article  CAS  Google Scholar 

  16. Mink S, Kerber U, Klempnauer K-H . Interaction of C/EBPbeta and v-Myb is required for synergistic activation of the mim-1 gene. Mol Cell Biol 1996; 16: 1316–1325.

    Article  CAS  Google Scholar 

  17. Chayka O, Kintscher J, Braas D, Klempnauer K-H . v-Myb mediates cooperation of a cell-specific enhancer with the mim-1 promoter. Mol Cell Biol 2005; 25: 499–511.

    Article  CAS  Google Scholar 

  18. Plachetka A, Chayka O, Wilczek C, Melnik S, Bonifer C, Klempnauer K-H . C/EBPbeta induces chromatin opening at a cell-type-specific enhancer. Mol Cell Biol 2008; 28: 2102–2112.

    Article  CAS  Google Scholar 

  19. Wilczek C, Chayka O, Plachetka A, Klempnauer KH . Myb-induced chromatin remodeling at a dual enhancer/promoter element involves non-coding RNA transcription and is disrupted by oncogenic mutations of v-myb. J Biol Chem 2009; 284: 35314–35324.

    Article  CAS  Google Scholar 

  20. Picman AK . Biological activities of sesquiterpene lactones. Biochem Syst Ecol 1986; 14: 255–281.

    Article  CAS  Google Scholar 

  21. Schmidt TJ . Toxic activities of sesquiterpene lactones—structural and biochemical aspects. Curr Org Chem 1999; 3: 577–605.

    CAS  Google Scholar 

  22. Schmidt TJ . Structure-activity relationships of sesquiterpene lactones. In: Atta-ur-Rahman Ed. Studies in Natural Products Chemistry, Vol. 33. Elsevier: Amsterdam, 2006; pp 309–392.

    Google Scholar 

  23. Ivanova O, Braas D, Klempnauer K-H . Oncogenic point mutations in the Myb DNA-binding domain alter the DNA-binding properties of Myb at a physiological target gene. Nucleic Acids Res 2007; 35: 7237–7247.

    Article  CAS  Google Scholar 

  24. Schmidt TJ, Brun R, Willuhn G, Khalid SA . Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med 2002; 68: 750–751.

    Article  CAS  Google Scholar 

  25. Molvaersmyr AK, Saether T, Gilfillan S, Lorenzo PI, Kvaloy H, Matre V et al. A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res 2010; 38: 4970–4984.

    Article  CAS  Google Scholar 

  26. Dahle , Andersen T, Nordgård O, Matre V, Del Sal G, Gabrielsen OS . Transactivation properties of c-Myb are critically dependent on two SUMO-1 acceptor sites that are conjugated in a PIASy enhanced manner. Eur J Biochem 2003; 270: 1338–1348.

    Article  CAS  Google Scholar 

  27. Klempnauer K-H . Methylation-sensitive DNA binding by v-myb and c-myb proteins. Oncogene 1993; 8: 111–115.

    CAS  PubMed  Google Scholar 

  28. Kawasaki BT, Hurt EM, Kalathur M, Duhagon MA, Milner JA, Kim YS et al. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: an integrated molecular profiling approach. Prostate 2009; 69: 827–837.

    Article  CAS  Google Scholar 

  29. Hall IH, Lee KH, Starnes CO, Sumida Y, Wu RY, Waddell TG et al. Anti-inflammatory activity of sesquiterpene lactones and related compounds. J Pharm Sci 1979; 68: 537–542.

    Article  CAS  Google Scholar 

  30. Heptinstall S, Awang DVC . Feverfew: a review of its History, its biological and medicinal properties, and the status of commerical preparations of the herb (1998). In: Lawson L, Bauer R (eds). Phytomedicines of Europe; ACS Symposium Series, 691. American Chemical Society: Washington, DC, 1998, pp 158–175.

    Google Scholar 

  31. Dominguez E, Romo J, Mexicanin I . A new sesquiterpene lactone related to tenulin. Tetrahedron 1963; 19: 1415–1421.

    Article  CAS  Google Scholar 

  32. Seaman FC . Sesquiterpene lactones as taxonomic characters in the asteraceae. Bot Rev 1982; 48: 121–592.

    Article  CAS  Google Scholar 

  33. Introna M, Golay J, Frampton J, Nakano T, Ness SA, Graf T . Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell 1990; 63: 1289–1297.

    Article  CAS  Google Scholar 

  34. Myrset AH, Bostad A, Jamin N, Lirsac PN, Toma F, Gabrielsen OS . DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. EMBO J 1993; 12: 4625–4633.

    Article  CAS  Google Scholar 

  35. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukaemia stem and progenitor cells. Blood 2005; 105: 4163–4169.

    Article  CAS  Google Scholar 

  36. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007; 110: 4427–4435.

    Article  CAS  Google Scholar 

  37. Nasim S, Crooks PA . Antileukemic activity of aminoparthenolide analogs. Bioorg Med Chem Lett 2008; 18: 3870–3873.

    Article  CAS  Google Scholar 

  38. Lyß G, Knorre A, Schmidt TJ, Pahl HL, Merfort I . The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 1998; 273: 33508–33516.

    Article  Google Scholar 

  39. Rüngeler P, Castro V, Mora G, Gören N, Vichnewski W, Pahl HL et al. Inhibition of transcription factor NF-kappa B by sesquiterpene lactones—a proposed molecular mechanism of action. Bioorg Med Chem 1999; 7: 2343–2352.

    Article  Google Scholar 

  40. Bedoya LM, Abad MJ, Bermejo P . The role of parthenolide in intracellular signaling processes: review of current knowledge. Curr Signal Transduct Ther 2008; 3: 82–87.

    Article  CAS  Google Scholar 

  41. Anfossi G, Gewirtz AM, Calabretta B . An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 1989; 86: 3379–3383.

    Article  CAS  Google Scholar 

  42. Calabretta B, Sims RB, Valtieri M, Caracciolo D, Szczylik C, Venturelli D et al. Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc Natl Acad Sci USA 1991; 88: 2351–2355.

    Article  CAS  Google Scholar 

  43. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  Google Scholar 

  44. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  Google Scholar 

  45. Biroccio A, Benassi B, D’Agnano I, D’Angelo C, Buglioni S, Mottolese M et al. c-Myb and Bcl-x overexpression predicts poor prognosis in colorectal cancer: clinical and experimental findings. Am J Pathol 2001; 158: 1289–1299.

    Article  CAS  Google Scholar 

  46. Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T et al. Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 2006; 45: 1143–1154.

    Article  CAS  Google Scholar 

  47. Guérin M, Sheng ZM, Andrieu N, Riou G . Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 1990; 5: 131–135.

    PubMed  Google Scholar 

  48. Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci USA 2007; 104: 13762–13767.

    Article  CAS  Google Scholar 

  49. Nicolau M, Levine AJ, Carlsson G . Topology based data analysis identifies a subgroup of breast cancers with a unique mutationaol profile and excellent survival. Proc Natl Acad Sci USA 2011; 108: 7265–7270.

    Article  CAS  Google Scholar 

  50. Thorner AR, Parker JS, Hoadley KA, Perou CM . Potential tumor suppressor role for the c-Myb oncogene in luminal breast cancer. PLoS One 2010; 5: e13073.

    Article  Google Scholar 

  51. Persson M, Andrén Y, Mark J, Horlings HM, Persson F, Stenman G . Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast, and head and neck. Proc Natl Acad Sci USA 2009; 106: 18740–18744.

    Article  CAS  Google Scholar 

  52. Opalinska JB, Gewirtz AM . Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1: 503–514.

    Article  CAS  Google Scholar 

  53. Litvak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402–408.

    Article  Google Scholar 

Download references

Acknowledgements

We thank B Berkenfeld, J Steffen and A Krause for technical assistance, and O Gabrielsen for plasmids. This work was supported by Deutsche José Carreras Leukämie-Stiftung and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-H Klempnauer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujnicki, T., Wilczek, C., Schomburg, C. et al. Inhibition of Myb-dependent gene expression by the sesquiterpene lactone mexicanin-I. Leukemia 26, 615–622 (2012). https://doi.org/10.1038/leu.2011.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.275

Keywords

This article is cited by

Search

Quick links