Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR–ABL-positive mice

Abstract

Although BCR–ABL+ stem cells in chronic myeloid leukemia (CML) resist elimination by targeted pharmacotherapy in most patients, immunological graft-versus-leukemia effects can cure the disease. Besides cytotoxic T cells, natural killer (NK) cells may have a role in immune control of CML. Here, we explored the functionality of NK cells in CML patients and in a transgenic inducible BCR–ABL mouse model. Compared with controls, NK-cell proportions among lymphocytes were decreased at diagnosis of CML and did not recover during imatinib-induced remission for 10–34 months. Functional experiments revealed limited in vitro expansion of NK cells from CML patients and a reduced degranulation response to K562 target cells both at diagnosis and during imatinib therapy. Consistent with the results in human CML, relative numbers of NK1.1+ NK cells were reduced following induction of BCR–ABL expression in mice, and the defects persisted after BCR–ABL reversion. Moreover, target-induced degranulation by expanded BCR–ABL+ NK cells was compromised. We conclude that CML is associated with quantitative and functional defects within the NK-cell compartment, which is reproduced by induced BCR–ABL expression in mice. Further work will aim at identifying the mechanisms of NK-cell deficiency in CML and at developing strategies to exploit NK cells for immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  2. Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2005; 105: 324–334.

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    CAS  PubMed  Google Scholar 

  4. Hochhaus A, Druker B, Sawyers C, Guilhot F, Schiffer CA, Cortes J et al. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood 2008; 111: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2010; 362: 2260–2270.

    Article  CAS  PubMed  Google Scholar 

  6. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010; 362: 2251–2259.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  8. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  9. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    Article  CAS  PubMed  Google Scholar 

  10. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  11. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+CML cells. Blood 2007; 109: 4016–4019.

    Article  CAS  PubMed  Google Scholar 

  12. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldman JM, Melo JV . Chronic myeloid leukemia--advances in biology and new approaches to treatment. N Engl J Med 2003; 349: 1451–1464.

    Article  CAS  PubMed  Google Scholar 

  14. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ . Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776.

    Article  CAS  PubMed  Google Scholar 

  15. Hauch M, Gazzola MV, Small T, Bordignon C, Barnett L, Cunningham I et al. Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia. Blood 1990; 75: 2250–2262.

    CAS  PubMed  Google Scholar 

  16. Mackinnon S, Hows JM, Goldman JM . Induction of in vitro graft-versus-leukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood 1990; 76: 2037–2045.

    CAS  PubMed  Google Scholar 

  17. Savani BN, Mielke S, Adams S, Uribe M, Rezvani K, Yong AS et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia 2007; 21: 2145–2152.

    Article  CAS  PubMed  Google Scholar 

  18. Yong AS, Keyvanfar K, Hensel N, Eniafe R, Savani BN, Berg M et al. Primitive quiescent CD34+cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood 2009; 113: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sconocchia G, Lau M, Provenzano M, Rezvani K, Wongsena W, Fujiwara H et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood 2005; 106: 3666–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cervantes F, Pierson BA, McGlave PB, Verfaillie CM, Miller JS . Autologous activated natural killer cells suppress primitive chronic myelogenous leukemia progenitors in long-term culture. Blood 1996; 87: 2476–2485.

    CAS  PubMed  Google Scholar 

  21. Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B et al. Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood 1997; 89: 957–964.

    CAS  PubMed  Google Scholar 

  22. Mahon FX, Rea D, Guilhot F, Huguet F, Nicolini F, Nicolini FE et al. Discontinuation of imatinib therapy after achieving a molecular response in chronic myeloid leukemia patients. Blood 2009; 114: 859.

    Google Scholar 

  23. Verfaillie C, Miller W, Kay N, McGlave P . Adherent lymphokine-activated killer cells in chronic myelogenous leukemia: a benign cell population with potent cytotoxic activity. Blood 1989; 74: 793–797.

    CAS  PubMed  Google Scholar 

  24. Takahashi N, Miura I, Saitoh K, Miura AB . Lineage involvement of stem cells bearing the philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood 1998; 92: 4758–4763.

    CAS  PubMed  Google Scholar 

  25. Pierson BA, Miller JS . CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996; 88: 2279–2287.

    CAS  PubMed  Google Scholar 

  26. Fujimiya Y, Bakke A, Chang WC, Linker-Israeli M, Udis B, Horwitz D et al. Natural killer-cell immunodeficiency in patients with chronic myelogenous leukemia. I. Analysis of the defect using the monoclonal antibodies HNK-1 (LEU-7) and B73.1. Int J Cancer 1986; 37: 639–649.

    Article  CAS  PubMed  Google Scholar 

  27. Blake SJ, Bruce LA, Fraser CK, Hayball JD, Hughes TP . Dasatinib suppresses in vitro natural killer cell cytotoxicity. Blood 2008; 111: 4415–4416.

    Article  CAS  PubMed  Google Scholar 

  28. Fraser CK, Blake SJ, Diener KR, Lyons AB, Brown MP, Hughes TP et al. Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp Hematol 2009; 37: 256–265.

    Article  CAS  PubMed  Google Scholar 

  29. Salih J, Hilpert J, Placke T, Grunebach F, Steinle A, Salih HR et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 2010; 127: 2119–2128.

    Article  CAS  PubMed  Google Scholar 

  30. Seggewiss R, Lore K, Greiner E, Magnusson MK, Price DA, Douek DC et al. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 2005; 105: 2473–2479.

    Article  CAS  PubMed  Google Scholar 

  31. Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavlovic S . Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 2004; 104: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  32. Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 2005; 365: 657–662.

    Article  CAS  PubMed  Google Scholar 

  33. Chen CI, Maecker HT, Lee PP . Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood 2008; 111: 5342–5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riva G, Luppi M, Barozzi P, Quadrelli C, Basso S, Vallerini D et al. Emergence of BCR-ABL-specific cytotoxic T cells in the bone marrow of patients with Ph+acute lymphoblastic leukemia during long-term imatinib mesylate treatment. Blood 2010; 115: 1512–1518.

    Article  PubMed  Google Scholar 

  35. Kim DH, Kamel-Reid S, Chang H, Sutherland R, Jung CW, Kim HJ et al. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica 2009; 94: 135–139.

    Article  CAS  PubMed  Google Scholar 

  36. Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 2010; 116: 772–782.

    Article  CAS  PubMed  Google Scholar 

  37. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 2009; 23: 1398–1405.

    Article  CAS  PubMed  Google Scholar 

  38. Valent JN, Schiffer CA . Prevalence of large granular lymphocytosis in patients with chronic myelogenous leukemia (CML) treated with dasatinib. Leuk Res 2011; 35: e1–e3.

    Article  PubMed  Google Scholar 

  39. Huettner CS, Zhang P, Van Etten RA, Tenen DG . Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 2000; 24: 57–60.

    Article  CAS  PubMed  Google Scholar 

  40. Imai C, Iwamoto S, Campana D . Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106: 376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nagler A, Lanier LL, Phillips JH . Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med 1990; 171: 1527–1533.

    Article  CAS  PubMed  Google Scholar 

  42. Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S et al. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 2009; 15: 4857–4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000; 92: 1641–1650.

    Article  CAS  PubMed  Google Scholar 

  44. Alter G, Malenfant JM, Altfeld M . CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294: 15–22.

    Article  CAS  PubMed  Google Scholar 

  45. Nakajima H, Zhao R, Lund TC, Ward J, Dolan M, Hirsch B et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol 2002; 168: 643–650.

    Article  CAS  PubMed  Google Scholar 

  46. Lanier LL, Benike CJ, Phillips JH, Engleman EG . Recombinant interleukin 2 enhanced natural killer cell-mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J Immunol 1985; 134: 794–801.

    CAS  PubMed  Google Scholar 

  47. Baron F, Turhan AG, Giron-Michel J, Azzarone B, Bentires-Alj M, Bours V et al. Leukemic target susceptibility to natural killer cytotoxicity: relationship with BCR-ABL expression. Blood 2002; 99: 2107–2113.

    Article  CAS  PubMed  Google Scholar 

  48. Cebo C, Voutsadakis IA, Da Rocha S, Bourhis JH, Jalil A, Azzarone B et al. Altered IFNgamma signaling and preserved susceptibility to activated natural killer cell-mediated lysis of BCR/ABL targets. Cancer Res 2005; 65: 2914–2920.

    Article  CAS  PubMed  Google Scholar 

  49. Pierson BA, Miller JS . The role of autologous natural killer cells in chronic myelogenous leukemia. Leuk Lymphoma 1997; 27: 387–399.

    Article  CAS  PubMed  Google Scholar 

  50. Mellqvist UH, Hansson M, Brune M, Dahlgren C, Hermodsson S, Hellstrand K . Natural killer cell dysfunction and apoptosis induced by chronic myelogenous leukemia cells: role of reactive oxygen species and regulation by histamine. Blood 2000; 96: 1961–1968.

    CAS  PubMed  Google Scholar 

  51. Park KU, Jin P, Sabatino M, Feng J, Civini S, Khuu H et al. Gene expression analysis of ex vivo expanded and freshly isolated NK cells from cancer patients. J Immunother 2010; 33: 945–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohon P, Porkka K, Mustjoki S . Immunoprofiling of patients with chronic myeloid leukemia at diagnosis and during tyrosine kinase inhibitor therapy. Eur J Haematol 2010; 85: 387–398.

    Article  CAS  PubMed  Google Scholar 

  53. Groh V, Wu J, Yee C, Spies T . Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  PubMed  Google Scholar 

  54. Klingemann HG, Eaves CJ, Barnett MJ, Eaves AC, Hogge DE, Nantel SH et al. Transplantation of patients with high risk acute myeloid leukemia in first remission with autologous marrow cultured in interleukin-2 followed by interleukin-2 administration. Bone Marrow Transplant 1994; 14: 389–396.

    CAS  PubMed  Google Scholar 

  55. Chiorean EG, Miller JS . The biology of natural killer cells and implications for therapy of human disease. J Hematother Stem Cell Res 2001; 10: 451–463.

    Article  CAS  PubMed  Google Scholar 

  56. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009; 69: 4010–4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D . Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 2010; 16: 3901–3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the program Innovative Medical Research (IMF Grant CH 220913) and from the German Research Foundation (DFG KO 2155/2-2) at the University Hospital Muenster. We would like to thank Rhoda Falkow for technical support.

Author contributionsCIUC, PPL, SK, BA, HJ, WEB and CR designed the experiments and analyzed the results. CIUC, MS, SP and LK performed the experiments. HTM contributed to cytokine flow cytometry. JG provided statistics support. CIUC, SK and CR wrote the paper. All authors discussed the results and commented on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Rossig.

Ethics declarations

Competing interests

SK is a member of Novartis, BMS, GSK and Pfizer Advisory Boards. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CU., Koschmieder, S., Kerstiens, L. et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR–ABL-positive mice. Leukemia 26, 465–474 (2012). https://doi.org/10.1038/leu.2011.239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.239

Keywords

This article is cited by

Search

Quick links