Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Human allo-reactive CD4+ T cells as strong mediators of anti-tumor immunity in NOD/scid mice engrafted with human acute lymphoblastic leukemia

Abstract

Adoptive immunotherapy with donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) may not only mediate Graft-versus-Leukemia (GvL) reactivity, but also induce Graft-versus-Host Disease (GvHD). As HLA-class II molecules are predominantly expressed on hematopoietic cells, CD4+ T cells may selectively mediate GvL reactivity without GvHD. Here, we assessed the capacity of human CD4+ T cells to act as sole mediators of GvL reactivity in a NOD/scid mouse model for human acute lymphoblastic leukemia and chronic myeloid leukemia in lymphoid blast crisis. Highly purified CD4+ DLI eradicated the leukemic cells. The anti-tumor immunity was mediated by a polyclonal CD4+ T cell response comprising cytokine-producing T-helper and cytolytic T-effector cells directed against the mismatched HLA-class II molecules of the patients. Furthermore, primary leukemic cells acquired an antigen-presenting cell (APC) phenotype in vivo after DLI, as well as in vitro after co-culture with leukemia-specific CD4+ T cells. In conclusion, our results show that CD4+ T cells can be strong mediators of anti-tumor immunity, and provide evidence that cross-talk between CD4+ T cells and leukemic cells is the basis for induction of leukemic cells with an APC phenotype. These data emphasize the clinical relevance of CD4+ T cell based immunotherapy as treatment modality for hematological malignancies after alloSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW et al. T cell depletion of HLA-identical transplants in leukemia. Blood 1991; 78: 2120–2130.

    CAS  PubMed  Google Scholar 

  2. Barge RM, Starrenburg CW, Falkenburg JHF, Fibbe WE, Marijt EW, Willemze R . Long-term follow-up of myeloablative allogeneic stem cell transplantation using Campath ‘in the bag’ as T cell depletion: the Leiden experience. Bone Marrow Transplant 2006; 37: 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  3. Collins Jr RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  4. Porter DL, Collins Jr RH, Hardy C, Kernan NA, Drobyski WR, Giralt S et al. Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions. Blood 2000; 95: 1214–1221.

    CAS  PubMed  Google Scholar 

  5. Madrigal JA, Arguello R, Scott I, Avakian H . Molecular histocompatibility typing in unrelated donor bone marrow transplantation. Blood Rev 1997; 11: 105–117.

    Article  CAS  PubMed  Google Scholar 

  6. Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ et al. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 1984; 81: 4917–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutten CE, van Luxemburg-Heijs SAP, Griffioen M, Marijt EW, Jedema I, Heemskerk MHM et al. HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia 2008; 22: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  8. Schoenberger SP, Toes RE, van d V, Offringa R, Melief CJ . T cell help for cytotoxic T lymphocytes is mediated by CD40-CD40 L interactions. Nature 1998; 393: 480–483.

    Article  CAS  PubMed  Google Scholar 

  9. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . Help for cytotoxic T cell responses is mediated by CD40 signalling. Nature 1998; 393: 478–480.

    Article  CAS  PubMed  Google Scholar 

  10. Ridge JP, Di RF, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  11. Shedlock DJ, Shen H . Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003; 300: 337–339.

    Article  CAS  PubMed  Google Scholar 

  12. Faber LM, van Luxemburg-Heijs SAP, Veenhof WF, Willemze R, Falkenburg JHF . Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity. Blood 1995; 86: 2821–2828.

    CAS  PubMed  Google Scholar 

  13. Kloosterboer FM, van Luxemburg-Heijs SAP, van Soest RA, Barbui AM, van Egmond HM et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 2004; 18: 798–808.

    Article  CAS  PubMed  Google Scholar 

  14. Griffioen M, van der Meijden ED, Slager EH, Honders MW, Rutten CE, van Luxemburg-Heijs SAP et al. Identification of phosphatidylinositol 4-kinase type II beta as HLA class II-restricted target in graft versus leukemia reactivity. Proc Natl Acad Sci USA 2008; 105: 3837–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nimer SD, Giorgi J, Gajewski JL, Ku N, Schiller GJ, Lee K et al. Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation. A randomized controlled trial. Transplantation 1994; 57: 82–87.

    Article  CAS  PubMed  Google Scholar 

  16. Soiffer RJ, Alyea EP, Hochberg E, Wu C, Canning C, Parikh B et al. Randomized trial of CD8+ T cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 2002; 8: 625–632.

    Article  PubMed  Google Scholar 

  17. Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ et al. Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res 2002; 8: 2052–2060.

    CAS  PubMed  Google Scholar 

  18. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  19. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999; 162: 168–175.

    CAS  PubMed  Google Scholar 

  20. Smit WM, Rijnbeek M, van Bergen CAM, de Paus RA, Vervenne HA, van de Keur M et al. Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Hum Immunol 1997; 53: 216–223.

    Article  CAS  PubMed  Google Scholar 

  21. Jedema I, Meij P, Steeneveld E, Hoogendoorn M, Nijmeijer BA, van de Meent M et al. Early detection and rapid isolation of leukemia-reactive donor T cells for adoptive transfer using the IFN-gamma secretion assay. Clin Cancer Res 2007; 13 (2 Part 1): 636–643.

    Article  CAS  PubMed  Google Scholar 

  22. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA . CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 1999; 94: 2048–2055.

    CAS  PubMed  Google Scholar 

  23. Brouwer RE, van der Hoorn MAWG, Kluin-Nelemans HC, van Zelderen-Bhola S, Willemze R, Falkenburg JHF . The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 2000; 61: 565–574.

    Article  CAS  PubMed  Google Scholar 

  24. Hoogendoorn M, Wolbers JO, Smit WM, Schaafsma MR, Barge RM, Willemze R et al. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy. Leukemia 2004; 18: 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  25. Nijmeijer BA, van Schie MLJ, Verzaal P, Willemze R, Falkenburg JHF . Responses to donor lymphocyte infusion for acute lymphoblastic leukemia may be determined by both qualitative and quantitative limitations of antileukemic T cell responses as observed in an animal model for human leukemia. Exp Hematol 2005; 33: 1172–1181.

    Article  CAS  PubMed  Google Scholar 

  26. Heemskerk MHM, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  27. Griffioen M, van Egmond HM, Barnby-Porritt H, van der Hoorn MA, Hagedoorn RS, Kester MG et al. Genetic engineering of virus-specific T cells with T cell receptors recognizing minor histocompatibility antigens for clinical application. Haematologica 2008; 93: 1535–1543.

    Article  CAS  PubMed  Google Scholar 

  28. Rutten CE, van Luxemburg-Heijs SAP, van der Meijden ED, Griffioen M, Oudshoorn M, Willemze R et al. HLA-DPB1 mismatching results in the generation of a full repertoire of HLA-DPB1 specific CD4+ T cell responses showing immunogenicity of all HLA-DPB1 alleles. Biol.Blood Marrow Transplant 2010; 16: 1282–1292.

    Article  CAS  PubMed  Google Scholar 

  29. Stumpf AN, van der Meijden ED, van Bergen CAM, Willemze R, Falkenburg JHF, Griffioen M . Identification of 4 new HLA-DR-restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood 2009; 114: 3684–3692.

    Article  CAS  PubMed  Google Scholar 

  30. Rutten CE, van Luxemburg-Heijs SAP, van der Meijden ED, Griffioen M, Oudshoorn M, Willemze R et al. Both permissive and nonpermissive HLA-DPB1 mismatches can induce polyclonal HLA-DPB1 specific immune responses in vivo and in vitro. Blood 2010; 115: 151–153.

    Article  CAS  PubMed  Google Scholar 

  31. Petersdorf EW . Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol 2008; 20: 588–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petersdorf EW, Kollman C, Hurley CK, Dupont B, Nademanee A et al. Effect of HLA class II gene disparity on clinical outcome in unrelated donor hematopoietic cell transplantation for chronic myeloid leukemia: the US National Marrow Donor Program Experience. Blood 2001; 98: 2922–2929.

    Article  CAS  PubMed  Google Scholar 

  33. Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 2004; 104: 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  34. Chalandon Y, Tiercy JM, Schanz U, Gungor T, Seger R et al. Impact of high-resolution matching in allogeneic unrelated donor stem cell transplantation in Switzerland. Bone Marrow Transplant 2006; 37: 909–916.

    Article  CAS  PubMed  Google Scholar 

  35. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007; 110: 4576–4583.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank ED van der Meijden (Leiden University Medical Center, Department of Hematology) for generation of HLA-DQ constructs. This study was supported by grant 2008-4263 from the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Stevanović.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanović, S., Griffioen, M., Nijmeijer, B. et al. Human allo-reactive CD4+ T cells as strong mediators of anti-tumor immunity in NOD/scid mice engrafted with human acute lymphoblastic leukemia. Leukemia 26, 312–322 (2012). https://doi.org/10.1038/leu.2011.222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.222

Keywords

This article is cited by

Search

Quick links