Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Proapoptotic signaling activity of the anti-CD40 monoclonal antibody dacetuzumab circumvents multiple oncogenic transformation events and chemosensitizes NHL cells

Abstract

Non-Hodgkin lymphoma (NHL) is a genetically heterogeneous disease with several oncogenic events implicated in the transformation of normal developing B lymphocytes. The objective of this study was to elucidate the signal transduction-based antitumor mechanism(s) of action for the anti-CD40 monoclonal antibody dacetuzumab (SGN-40) in NHL. We report that dacetuzumab activates two distinct proapoptotic signaling pathways, overcoming transformation events key to the pathogenesis of NHL. Dacetuzumab-mediated CD40 signaling constitutively activated the nuclear factor-κB and mitogen-activated protein kinase signaling pathways producing the sustained downregulation of B-cell lymphoma 6 (BCL-6), an oncoprotein implicated in lymphomagenesis. Loss of BCL-6 resulted in c-Myc downregulation and activation of a transcriptional program characteristic of early B-cell maturation, concomitant with reduced proliferation and cell death. In a second mechanism, dacetuzumab signaling induced the expression of the proapoptotic p53 family member TAp63α and downstream proteins associated with the intrinsic and extrinsic apoptotic machinery. Dacetuzumab was synergistic in combination with DNA-damaging chemotherapeutic drugs, correlating with TAp63α upregulation. Furthermore, dacetuzumab augmented the activity of rituximab in combination with multiple chemotherapies in the xenograft models of NHL. The ability of dacetuzumab signaling to circumvent oncogenic events and potentiate the activity of chemotherapy regimens provides a unique therapeutic approach to NHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  PubMed  Google Scholar 

  2. Ye BH, Rao PH, Chaganti RS, Dalla-Favera R . Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res 1993; 53: 2732–2735.

    CAS  PubMed  Google Scholar 

  3. Weiss LM, Warnke RA, Sklar J, Cleary ML . Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987; 317: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  4. Ladanyi M, Offit K, Jhanwar SC, Filippa DA, Chaganti RS . MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 1991; 77: 1057–1063.

    CAS  PubMed  Google Scholar 

  5. Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 1998; 92: 3018–3024.

    CAS  PubMed  Google Scholar 

  6. Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M et al. Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood 1997; 90: 4078–4091.

    CAS  PubMed  Google Scholar 

  7. Biancone L, Cantaluppi V, Camussi G . CD40-CD154 interaction in experimental and human disease (review). Int J Mol Med 1999; 3: 343–353.

    CAS  PubMed  Google Scholar 

  8. van Kooten C, Banchereau J . CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17.

    Article  CAS  PubMed  Google Scholar 

  9. Harnett MM . CD40: a growing cytoplasmic tale. Sci STKE 2004; 2004: pe25.

    PubMed  Google Scholar 

  10. Ramesh N, Morio T, Fuleihan R, Worm M, Horner A, Tsitsikov E et al. CD40-CD40 ligand (CD40L) interactions and X-linked hyperIgM syndrome (HIGMX-1). Clin Immunol Immunopathol 1995; 76 (3 Part 2): S208–S213.

    Article  CAS  PubMed  Google Scholar 

  11. Guzman-Rojas L, Sims-Mourtada JC, Rangel R, Martinez-Valdez H . Life and death within germinal centres: a double-edged sword. Immunology 2002; 107: 167–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vonderheide RH . Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 2007; 13: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  13. Aggarwal BB . Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3: 745–756.

    Article  CAS  PubMed  Google Scholar 

  14. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  15. Funakoshi S, Longo DL, Beckwith M, Conley DK, Tsarfaty G, Tsarfaty I et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 1994; 83: 2787–2794.

    CAS  PubMed  Google Scholar 

  16. Coiffier B . Rituximab therapy in malignant lymphoma. Oncogene 2007; 26: 3603–3613.

    Article  CAS  PubMed  Google Scholar 

  17. Zelenetz AD, Hamlin P, Kewalramani T, Yahalom J, Nimer S, Moskowitz CH . Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin's lymphoma. Ann Oncol 2003; 14 (Suppl 1): i5–10.

    Article  PubMed  Google Scholar 

  18. Tong AW, Stone MJ . Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther 2003; 10: 1–13.

    Article  CAS  PubMed  Google Scholar 

  19. Law CL, Gordon KA, Collier J, Klussman K, McEarchern JA, Cerveny CG et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005; 65: 8331–8338.

    Article  CAS  PubMed  Google Scholar 

  20. Oflazoglu E, Stone IJ, Brown L, Gordon KA, van Rooijen N, Jonas M et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer 2009; 100: 113–117.

    Article  CAS  PubMed  Google Scholar 

  21. Mohammad RM, Wall NR, Dutcher JA, Al-Katib AM . The addition of bryostatin 1 to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy improves response in a CHOP-resistant human diffuse large cell lymphoma xenograft model. Clin Cancer Res 2000; 6: 4950–4956.

    CAS  PubMed  Google Scholar 

  22. Allman D, Jain A, Dent A, Maile RR, Selvaggi T, Kehry MR et al. BCL-6 expression during B-cell activation. Blood 1996; 87: 5257–5268.

    CAS  PubMed  Google Scholar 

  23. Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 2007; 12: 280–292.

    Article  CAS  PubMed  Google Scholar 

  24. Jardin F, Ruminy P, Bastard C, Tilly H . The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol Biol (Paris) 2007; 55: 73–83.

    Article  CAS  Google Scholar 

  25. Niu H, Ye BH, Dalla-Favera R . Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 1998; 12: 1953–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL . Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol 2004; 173: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  27. Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 2007; 8: 705–714.

    Article  CAS  PubMed  Google Scholar 

  28. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    Article  CAS  PubMed  Google Scholar 

  29. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R . BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 2005; 6: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  30. Dicker F, Kater AP, Prada CE, Fukuda T, Castro JE, Sun G et al. CD154 induces p73 to overcome the resistance to apoptosis of chronic lymphocytic leukemia cells lacking functional p53. Blood 2006; 108: 3450–3457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lantner F, Starlets D, Gore Y, Flaishon L, Yamit-Hezi A, Dikstein R et al. CD74 induces TAp63 expression leading to B-cell survival. Blood 2007; 110: 4303–4311.

    Article  CAS  PubMed  Google Scholar 

  32. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  33. Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H et al. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 2005; 24: 2458–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kelly KF, Daniel JM . POZ for effect—POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006; 16: 578–587.

    Article  CAS  PubMed  Google Scholar 

  35. Baron BW, Anastasi J, Montag A, Huo D, Baron RM, Karrison T et al. The human BCL6 transgene promotes the development of lymphomas in the mouse. Proc Natl Acad Sci USA 2004; 101: 14198–14203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 2005; 7: 445–455.

    Article  CAS  PubMed  Google Scholar 

  37. Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 2009; 113: 3397–3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med 2009; 15: 1369–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burington B, Yue P, Shi X, Advani R, Yu N, Lau J et al. CD40 Pathway activation status predicts response to CD40 targeted therapy in diffuse large B cell lymphoma. Sci Transl Med 2011 (in press).

  40. Marshall CJ . Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  41. Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG . Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 1997; 17: 1947–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bric A, Miething C, Bialucha CU, Scuoppo C, Zender L, Krasnitz A et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 2009; 16: 324–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K . Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med 2005; 202: 1471–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 2002; 17: 51–62.

    CAS  PubMed  Google Scholar 

  45. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH . Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003; 4: 321–329.

    Article  CAS  PubMed  Google Scholar 

  46. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001; 412: 300–307.

    Article  CAS  PubMed  Google Scholar 

  47. Lin KI, Lin Y, Calame K . Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol Cell Biol 2000; 20: 8684–8695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Zhou Z, Chen C . WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ 2008; 15: 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  50. Winter JN, Weller EA, Horning SJ, Krajewska M, Variakojis D, Habermann TM et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood 2006; 107: 4207–4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Hans-Peter Gerber for optimization of in vivo chemotherapy regimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Lewis.

Ethics declarations

Competing interests

All authors are employees and shareholders of Seattle Genetics, Inc.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, T., McCormick, R., Stone, I. et al. Proapoptotic signaling activity of the anti-CD40 monoclonal antibody dacetuzumab circumvents multiple oncogenic transformation events and chemosensitizes NHL cells. Leukemia 25, 1007–1016 (2011). https://doi.org/10.1038/leu.2011.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.21

Keywords

Search

Quick links