Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells

Abstract

Loss-of-function mutations of RUNX1 have been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDSs). Although several reports have suggested roles for RUNX1 as a tumor suppressor, its precise function remains unknown. Because gene alterations of RUNX1 by themselves do not lead to the development of leukemia in mouse models, additional mutation(s) would be required for leukemia development. Here, we report that the C-terminal deletion mutant of RUNX1, RUNX1dC, attenuates DNA-damage repair responses in hematopoietic stem/progenitor cells. γH2AX foci, which indicate the presence of DNA double-strand breaks, were more abundantly accumulated in RUNX1dC-transduced lineageSca1+c-kit+ (LSK) cells than in mock-transduced LSK cells both in a steady state and after γ-ray treatment. Expression profiling by real-time -PCR array revealed RUNX1dC represses the expression of Gadd45a, a sensor of DNA stress. Furthermore, bone marrow cells from MDS/AML patients harboring the RUNX1-C-terminal mutation showed significantly lower levels of GADD45A expression compared with those from MDS/AML patients with wild-type RUNX1. As for this mechanism, we found that RUNX1 directly regulates the transcription of GADD45A and that RUNX1 and p53 synergistically activate the GADD45A transcription. Together, these results suggest Gadd45a dysfunction due to RUNX1 mutations can cause additional mutation(s) required for multi-step leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hirai H . Molecular mechanisms of myelodysplastic syndrome. Jpn J Clin Oncol 2003; 33: 153–160.

    Article  PubMed  Google Scholar 

  2. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  3. Sugimoto K, Hirano N, Toyoshima H, Chiba S, Mano H, Takaku F et al. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 1993; 81: 3022–3026.

    CAS  PubMed  Google Scholar 

  4. Russell M, List A, Greenberg P, Woodward S, Glinsmann B, Parganas E et al. Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 1994; 84: 1243–1248.

    CAS  PubMed  Google Scholar 

  5. Harada Y, Harada H . Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations. J Cell Physiol 2009; 220: 16–20.

    Article  CAS  PubMed  Google Scholar 

  6. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  PubMed  Google Scholar 

  7. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  8. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  9. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114: 5352–5361.

    Article  CAS  PubMed  Google Scholar 

  10. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  11. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindahl T, Barnes DE . Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 2000; 65: 127–133.

    Article  CAS  PubMed  Google Scholar 

  15. Hoeijmakers JH . Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366–374.

    Article  CAS  PubMed  Google Scholar 

  16. Kundu M, Compton S, Garrett-Beal L, Stacy T, Starost MF, Eckhaus M et al. Runx1 deficiency predisposes mice to T-lymphoblastic lymphoma. Blood 2005; 106: 3621–3624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liebermann DA, Hoffman B . Gadd45 in stress signaling. J Mol Signal 2008; 3: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  PubMed  Google Scholar 

  19. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T . High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004; 103: 2316–2324.

    Article  CAS  PubMed  Google Scholar 

  20. Satoh Y, Matsumura I, Tanaka H, Ezoe S, Fukushima K, Tokunaga M et al. AML1/RUNX1 works as a negative regulator of c-Mpl in hematopoietic stem cells. J Biol Chem 2008; 283: 30045–30056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T . Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101: 673–680.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 1995; 14: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  24. Mah LJ, El-Osta A, Karagiannis TC . gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24: 679–686.

    Article  CAS  PubMed  Google Scholar 

  25. Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res 2005; 65: 11704–11711.

    Article  CAS  PubMed  Google Scholar 

  26. Mori T, Nakane M, Hattori T, Matsunaga T, Ihara M, Nikaido O . Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem Photobiol 1991; 54: 225–232.

    Article  CAS  PubMed  Google Scholar 

  27. Perugini M, Kok CH, Brown AL, Wilkinson CR, Salerno DG, Young SM et al. Repression of Gadd45alpha by activated FLT3 and GM-CSF receptor mutants contributes to growth, survival and blocked differentiation. Leukemia 2009; 23: 729–738.

    Article  CAS  PubMed  Google Scholar 

  28. Hollander MC, Alamo I, Jackman J, Wang MG, McBride OW, Fornace Jr AJ . Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem 1993; 268: 24385–24393.

    CAS  PubMed  Google Scholar 

  29. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  CAS  PubMed  Google Scholar 

  30. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R et al. Genomic instability in Gadd45a-deficient mice. Nat Genet 1999; 23: 176–184.

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita N, Osato M, Huang L, Yanagida M, Kogan SC, Iwasaki M et al. Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice. Br J Haematol 2005; 131: 495–507.

    Article  CAS  PubMed  Google Scholar 

  32. Krejci O, Wunderlich M, Geiger H, Chou FS, Schleimer D, Jansen M et al. p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood 2008; 111: 2190–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003; 112: 1751–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA . GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 2002; 192: 327–338.

    Article  CAS  PubMed  Google Scholar 

  35. Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994; 266: 1376–1380.

    Article  CAS  PubMed  Google Scholar 

  36. Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 2000; 20: 3705–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B et al. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 2005; 24: 7170–7179.

    Article  CAS  PubMed  Google Scholar 

  38. Steensma DP, Gibbons RJ, Mesa RA, Tefferi A, Higgs DR . Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur J Haematol 2005; 74: 47–53.

    Article  CAS  PubMed  Google Scholar 

  39. Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC et al. RUNX1 gene mutation in primary myelodysplastic syndrome—the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol 2007; 139: 405–414.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Dermatology, Osaka University Graduate School of Medicine for help with UV-B-exposure experiments, Y Sowa and T Sakai for help with reporter assays of Gadd45a, and J Yamauchi for technical advice. We appreciate discussions with and suggestions of C Masutani, K Oritani, T Yokota and S Ezoe. This research was supported in part by a Grant-in Aid for Scientific Research (C) (to Y Satoh), a Grant-in Aid for Scientific Research (B) (to I Matsumura) from MEXT and by the Sankyo Foundation of Life Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Satoh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, Y., Matsumura, I., Tanaka, H. et al. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia 26, 303–311 (2012). https://doi.org/10.1038/leu.2011.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.202

Keywords

This article is cited by

Search

Quick links