Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Notch signaling in mammalian hematopoietic stem cells

Abstract

Notch is a crucial cell signaling pathway in metazoan development. By means of cell–cell interactions, Notch signaling regulates cellular identity, proliferation, differentiation and apoptosis. Within the last decade, numerous studies have shown an important role for this pathway in the development and homeostasis of mammalian stem cell populations. Hematopoietic stem cells (HSCs) constitute a well-defined population that shows self-renewal and multi-lineage differentiation potential, with the clinically relevant capacity to repopulate the hematopoietic system of an adult organism. Here, we review the emergence, development and maintenance of HSCs during mammalian embryogenesis and adulthood, with respect to the role of Notch signaling in hematopoietic biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Czechowicz A, Weissman IL . Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Immunol Allergy Clin North Am 2010; 30: 159–171.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Orkin SH . Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 2000; 1: 57–64.

    Article  CAS  PubMed  Google Scholar 

  3. Sell S . Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev 2005; 1: 197–205.

    Article  CAS  PubMed  Google Scholar 

  4. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  5. Wagers AJ, Christensen JL, Weissman IL . Cell fate determination from stem cells. Gene Ther 2002; 9: 606–612.

    Article  CAS  PubMed  Google Scholar 

  6. Mohr OL . Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 1919; 4: 275–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morgan TH . The theory of the gene. Am Nat 1917; 51: 513–544.

    Article  Google Scholar 

  8. Simpson P . Notch signalling in development: on equivalence groups and asymmetric developmental potential. Curr Opin Genet Dev 1997; 7: 537–542.

    Article  CAS  PubMed  Google Scholar 

  9. Bray SJ . Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678–689.

    Article  CAS  PubMed  Google Scholar 

  10. Coffman C, Harris W, Kintner C . Xotch, the Xenopus homolog of Drosophila notch. Science 1990; 249: 1438–1441.

    Article  CAS  PubMed  Google Scholar 

  11. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  12. Allman D, Punt JA, Izon DJ, Aster JC, Pear WS . An invitation to T and more: notch signaling in lymphopoiesis. Cell 2002; 109 (Suppl): S1–S11.

    Article  CAS  PubMed  Google Scholar 

  13. Ohishi K, Katayama N, Shiku H, Varnum-Finney B, Bernstein ID . Notch signalling in hematopoiesis. Semin Cell Dev Biol 2003; 14: 143–150.

    Article  CAS  PubMed  Google Scholar 

  14. Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zuniga-Pflucker JC . Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J Immunol 2010; 185: 867–876.

    Article  CAS  PubMed  Google Scholar 

  15. Irvine KD . Fringe, Notch, and making developmental boundaries. Curr Opin Genet Dev 1999; 9: 434–441.

    Article  CAS  PubMed  Google Scholar 

  16. Lai EC, Deblandre GA, Kintner C, Rubin GM . Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 2001; 1: 783–794.

    Article  CAS  PubMed  Google Scholar 

  17. Axelrod JD . Delivering the lateral inhibition punchline: it's all about the timing. Sci Signal 2010; 3: pe38.

    Article  PubMed  CAS  Google Scholar 

  18. D’Souza B, Miyamoto A, Weinmaster G . The many facets of Notch ligands. Oncogene 2008; 27: 5148–5167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fortini ME . Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 2002; 3: 673–684.

    Article  CAS  PubMed  Google Scholar 

  20. Schweisguth F . Regulation of notch signaling activity. Curr Biol 2004; 14: R129–R138.

    Article  CAS  PubMed  Google Scholar 

  21. Hamaguchi Y, Mastunami N, Yamamoto Y, Kuze K, Kangawa K, Matsuo H et al. Cloning and characterization of a protein binding to the J kappa recombination signal sequence of immunoglobulin genes. Adv Exp Med Biol 1991; 292: 177–186.

    Article  CAS  PubMed  Google Scholar 

  22. Kovall RA, Hendrickson WA . Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 2004; 23: 3441–3451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA . Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 2002; 16: 1397–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallberg AE, Pedersen K, Lendahl U, Roeder RG . p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002; 22: 7812–7819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD . Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002; 22: 7688–7700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iso T, Kedes L, Hamamori Y . HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194: 237–255.

    Article  CAS  PubMed  Google Scholar 

  27. Fryer CJ, White JB, Jones KA . Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16: 509–520.

    Article  CAS  PubMed  Google Scholar 

  28. Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 2004; 279: 9417–9423.

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004; 21: 31–41.

    Article  CAS  PubMed  Google Scholar 

  30. Weng AP, Aster JC . Multiple niches for Notch in cancer: context is everything. Curr Opin Genet Dev 2004; 14: 48–54.

    Article  CAS  PubMed  Google Scholar 

  31. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E . Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000; 19: 2465–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906.

    Article  CAS  PubMed  Google Scholar 

  33. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14: 1343–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T . Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 2004; 18: 2469–2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koo BK, Lim HS, Song R, Yoon MJ, Yoon KJ, Moon JS et al. Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 2005; 132: 3459–3470.

    Article  CAS  PubMed  Google Scholar 

  36. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M . The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004; 18: 901–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 2004; 18: 2474–2478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–439.

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–442.

    Article  CAS  PubMed  Google Scholar 

  40. Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002; 109: 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 2003; 23: 14–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY . Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 2005; 435: 98–104.

    Article  CAS  PubMed  Google Scholar 

  44. Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A et al. Notch signaling is essential for ventricular chamber development. Dev Cell 2007; 12: 415–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang HU, Chen ZF, Anderson DJ . Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998; 93: 741–753.

    Article  CAS  PubMed  Google Scholar 

  46. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA et al. Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development 2001; 128: 3675–3683.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong TP, Childs S, Leu JP, Fishman MC . Gridlock signalling pathway fashions the first embryonic artery. Nature 2001; 414: 216–220.

    Article  CAS  PubMed  Google Scholar 

  48. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 2008; 3: 625–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaffredo T, Bollerot K, Sugiyama D, Gautier R, Drevon C . Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. Int J Dev Biol 2005; 49: 269–277.

    Article  CAS  PubMed  Google Scholar 

  51. Kissa K, Herbomel P . Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464: 112–115.

    Article  CAS  PubMed  Google Scholar 

  52. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C . In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464: 116–120.

    Article  CAS  PubMed  Google Scholar 

  53. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464: 108–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dzierzak E, Speck NA . Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9: 129–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 2003; 18: 699–711.

    Article  CAS  PubMed  Google Scholar 

  56. Yoon MJ, Koo BK, Song R, Jeong HW, Shin J, Kim YW et al. Mind bomb-1 is essential for intraembryonic hematopoiesis in the aortic endothelium and the subaortic patches. Mol Cell Biol 2008; 28: 4794–4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robert-Moreno A, Guiu J, Ruiz-Herguido C, Lopez ME, Ingles-Esteve J, Riera L et al. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J 2008; 27: 1886–1895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamaguchi I, Huang XL, Takakura N, Tada J, Yamaguchi Y, Kodama H et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta–gonad–mesonephros region. Blood 1999; 93: 1549–1556.

    Article  CAS  PubMed  Google Scholar 

  59. Hsu HC, Ema H, Osawa M, Nakamura Y, Suda T, Nakauchi H . Hematopoietic stem cells express Tie-2 receptor in the murine fetal liver. Blood 2000; 96: 3757–3762.

    Article  CAS  PubMed  Google Scholar 

  60. Young PE, Baumhueter S, Lasky LA . The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 1995; 85: 96–105.

    Article  CAS  PubMed  Google Scholar 

  61. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G . Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 2004; 432: 625–630.

    Article  CAS  PubMed  Google Scholar 

  62. North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126: 2563–2575.

    Article  CAS  PubMed  Google Scholar 

  63. Bollerot K, Romero S, Dunon D, Jaffredo T . Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1. Gene Expr Patterns 2005; 6: 29–39.

    Article  CAS  PubMed  Google Scholar 

  64. Yokomizo T, Dzierzak E . Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 2010; 137: 3651–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eichmann A, Corbel C, Nataf V, Vaigot P, Breant C, Le Douarin NM . Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 1997; 94: 5141–5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eilken HM, Nishikawa S, Schroeder T . Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 2009; 457: 896–900.

    Article  CAS  PubMed  Google Scholar 

  67. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G . The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 2009; 457: 892–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 2004; 104: 3097–3105.

    Article  CAS  PubMed  Google Scholar 

  69. Bigas A, Robert-Moreno A, Espinosa L . The Notch pathway in the developing hematopoietic system. Int J Dev Biol 2010; 54: 1175–1188.

    Article  CAS  PubMed  Google Scholar 

  70. Gering M, Patient R . Notch signalling and haematopoietic stem cell formation during embryogenesis. J Cell Physiol 2010; 222: 11–16.

    Article  CAS  PubMed  Google Scholar 

  71. Evans T . Blood formation during Xenopus embryogenesis. In: Zon LI (ed). Hematopoiesis: a Developmental Approach. Oxford University Press: Oxford, 2001, pp 154–161.

    Google Scholar 

  72. McGrath KE, Palis J . Hematopoiesis in the yolk sac: more than meets the eye. Exp Hematol 2005; 33: 1021–1028.

    Article  PubMed  Google Scholar 

  73. Tober J, Koniski A, McGrath KE, Vemishetti R, Emerson R, de Mesy-Bentley KK et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 2007; 109: 1433–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ogawa M, Nishikawa S, Ikuta K, Yamamura F, Naito M, Takahashi K et al. B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J 1988; 7: 1337–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palis J, Robertson S, Kennedy M, Wall C, Keller G . Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126: 5073–5084.

    Article  CAS  PubMed  Google Scholar 

  76. Yoder MC, Hiatt K, Mukherjee P . In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 1997; 94: 6776–6780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E . Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1994; 1: 291–301.

    Article  CAS  PubMed  Google Scholar 

  78. Cormier F, Dieterlen-Lievre F . The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 1988; 102: 279–285.

    Article  CAS  PubMed  Google Scholar 

  79. Kau CL, Turpen JB . Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J Immunol 1983; 131: 2262–2266.

    CAS  PubMed  Google Scholar 

  80. Galloway JL, Zon LI . Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol 2003; 53: 139–158.

    Article  CAS  PubMed  Google Scholar 

  81. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F . Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl) 1995; 192: 425–435.

    Article  CAS  Google Scholar 

  82. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK . The placenta is a niche for hematopoietic stem cells. Dev Cell 2005; 8: 365–375.

    Article  CAS  PubMed  Google Scholar 

  83. Ottersbach K, Dzierzak E . The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 2005; 8: 377–387.

    Article  CAS  PubMed  Google Scholar 

  84. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2008; 2: 252–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta–gonad–mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 2002; 129: 4891–4899.

    Article  CAS  PubMed  Google Scholar 

  86. Yokota T, Huang J, Tavian M, Nagai Y, Hirose J, Zuniga-Pflucker JC et al. Tracing the first waves of lymphopoiesis in mice. Development 2006; 133: 2041–2051.

    Article  CAS  PubMed  Google Scholar 

  87. Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, Cumano A . Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 1999; 190: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL . The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 1995; 92: 10302–10306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim I, Yilmaz OH, Morrison SJ . CD144 (VE-cadherin) is transiently expressed by fetal liver hematopoietic stem cells. Blood 2005; 106: 903–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rebel VI, Miller CL, Eaves CJ, Lansdorp PM . The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 1996; 87: 3500–3507.

    Article  CAS  PubMed  Google Scholar 

  91. Rebel VI, Miller CL, Thornbury GR, Dragowska WH, Eaves CJ, Lansdorp PM . A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp Hematol 1996; 24: 638–648.

    CAS  PubMed  Google Scholar 

  92. Ema H, Nakauchi H . Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 2000; 95: 2284–2288.

    Article  CAS  PubMed  Google Scholar 

  93. Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A . RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 2005; 132: 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  94. Robert-Moreno A, Espinosa L, Sanchez MJ, de la Pompa JL, Bigas A . The notch pathway positively regulates programmed cell death during erythroid differentiation. Leukemia 2007; 21: 1496–1503.

    Article  CAS  PubMed  Google Scholar 

  95. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B . Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res 2010; 107: 860–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 2001; 128: 491–502.

    Article  CAS  PubMed  Google Scholar 

  97. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA . Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004; 117: 515–526.

    Article  CAS  PubMed  Google Scholar 

  98. Pear WS, Aster JC . T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr Opin Hematol 2004; 11: 426–433.

    Article  CAS  PubMed  Google Scholar 

  99. Rothenberg EV . T-lineage specification and commitment: a gene regulation perspective. Semin Immunol 2002; 14: 431–440.

    Article  CAS  PubMed  Google Scholar 

  100. Kunisato A, Chiba S, Nakagami-Yamaguchi E, Kumano K, Saito T, Masuda S et al. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 2003; 101: 1777–1783.

    Article  CAS  PubMed  Google Scholar 

  101. Link KA, Chou FS, Mulloy JC . Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol 2010; 222: 50–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakagawa M, Ichikawa M, Kumano K, Goyama S, Kawazu M, Asai T et al. AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 2006; 108: 3329–3334.

    Article  CAS  PubMed  Google Scholar 

  103. Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI . Hematopoietic stem cell fate is established by the Notch–Runx pathway. Genes Dev 2005; 19: 2331–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D et al. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell 2009; 16: 909–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marshall CJ, Kinnon C, Thrasher AJ . Polarized expression of bone morphogenetic protein-4 in the human aorta–gonad–mesonephros region. Blood 2000; 96: 1591–1593.

    Article  CAS  PubMed  Google Scholar 

  106. Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S, Knezevic K, Huckle L et al. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci USA 2007; 104: 840–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Varnum-Finney B, Brashem-Stein C, Bernstein ID . Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003; 101: 1784–1789.

    Article  CAS  PubMed  Google Scholar 

  109. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  110. Hadjidakis DJ, Androulakis II . Bone remodeling. Ann NY Acad Sci 2006; 1092: 385–396.

    Article  CAS  PubMed  Google Scholar 

  111. Whitfield JF, Morley P, Willick GE . The control of bone growth by parathyroid hormone, leptin, & statins. Crit Rev Eukaryot Gene Expr 2002; 12: 23–51.

    Article  CAS  PubMed  Google Scholar 

  112. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99: 2369–2378.

    Article  CAS  PubMed  Google Scholar 

  113. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  PubMed  Google Scholar 

  114. Varnum-Finney B, Halasz LM, Sun M, Gridley T, Radtke F, Bernstein ID . Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J Clin Invest 2011; 121: 1207–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID . Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  PubMed  Google Scholar 

  118. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 2002; 14: 637–645.

    Article  CAS  PubMed  Google Scholar 

  119. Mancini SJ, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F . Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 2005; 105: 2340–2342.

    Article  CAS  PubMed  Google Scholar 

  120. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    Article  CAS  PubMed  Google Scholar 

  121. Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M, Kuroda K et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 2002; 3: 443–450.

    Article  CAS  PubMed  Google Scholar 

  122. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2: 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wendorff AA, Koch U, Wunderlich FT, Wirth S, Dubey C, Bruning JC et al. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 2010; 33: 671–684.

    Article  CAS  PubMed  Google Scholar 

  124. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 1999; 11: 299–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Speck and Pear Labs is supported by grants from the NIH and Leukemia and Lymphoma Society. KVP is the recipient of a Fellow Award from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W S Pear.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajcini, K., Speck, N. & Pear, W. Notch signaling in mammalian hematopoietic stem cells. Leukemia 25, 1525–1532 (2011). https://doi.org/10.1038/leu.2011.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.127

Keywords

This article is cited by

Search

Quick links