Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Deletions of the transcription factor Ikaros in myeloproliferative neoplasms

Abstract

Transformation to acute leukemia is a major complication of myeloproliferative neoplasms (MPNs), however, the genetic changes leading to transformation remain largely unknown. We screened nine patients with post-MPN leukemia for chromosomal aberrations using microarray karyotyping. Deletions on the short arm of chromosome 7 (del7p) emerged as a recurrent defect. We mapped the common deleted region to the IKZF1 gene, which encodes the transcription factor Ikaros. We further examined the frequency of IKZF1 deletions in a total of 29 post-MPN leukemia and 526 MPN patients without transformation and observed a strong association of IKZF1 deletions with post-MPN leukemia in two independent cohorts. Patients with IKZF1 loss showed complex karyotypes, and del7p was a late event in the genetic evolution of the MPN clone. IKZF1 deletions were observed in both undifferentiated and differentiated myeloid cell types, indicating that IKZF1 loss does not cause differentiation arrest but rather renders progenitors susceptible to transformation, most likely through chromosomal instability. Induced Ikzf1 haploinsufficiency in primary murine progenitors resulted in elevated Stat5 phosphorylation and increased cytokine-dependent growth, suggesting that reduced expression of IKZF1 is sufficient to perturb growth regulation. Thus, IKZF1 loss is an important step in the leukemic transformation of a subpopulation of MPN patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Campbell P, Green A . The myeloproliferative disorders. N Engl J Med 2006; 355: 2452–2466.

    Article  CAS  PubMed  Google Scholar 

  2. Kralovics R . Genetic complexity of myeloproliferative neoplasms. Leukemia 2008; 22: 1841–1848.

    Article  CAS  PubMed  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  4. Kralovics R, Passamonti F, Buser A, Teo S, Tiedt R, Passweg J et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  5. Levine R, Wadleigh M, Cools J, Ebert B, Wernig G, Huntly B et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  6. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  7. Scott L, Tong W, Levine R, Scott M, Beer P, Stratton M et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008; 111: 1686–1689.

    Article  CAS  PubMed  Google Scholar 

  9. Pikman Y, Lee B, Mercher T, McDowell E, Ebert B, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pardanani A, Levine R, Lasho T, Pikman Y, Mesa R, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  PubMed  Google Scholar 

  11. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192.

    Article  CAS  PubMed  Google Scholar 

  12. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  13. Wolanskyj A, Lasho T, Schwager S, McClure R, Wadleigh M, Lee S et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 2005; 131: 208–213.

    Article  CAS  PubMed  Google Scholar 

  14. Theocharides A, Boissinot M, Girodon F, Garand R, Teo S, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    Article  CAS  PubMed  Google Scholar 

  16. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 2010; 70: 447–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Green A, Beer P . Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010; 362: 369–370.

    Article  CAS  PubMed  Google Scholar 

  18. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  20. Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009; 41: 450–454.

    Article  CAS  PubMed  Google Scholar 

  21. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  22. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  23. Georgopoulos K, Bigby M, Wang J, Molnar A, Wu P, Winandy S et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79: 143–156.

    Article  CAS  PubMed  Google Scholar 

  24. Winandy S, Wu P, Georgopoulos K . A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995; 83: 289–299.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Nichogiannopoulou A, Wu L, Sun L, Sharpe A, Bigby M et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5: 537–549.

    Article  CAS  PubMed  Google Scholar 

  26. Kano G, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Inaba T et al. Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels. Leuk Lymphoma 2008; 49: 965–973.

    Article  CAS  PubMed  Google Scholar 

  27. Georgopoulos K, Moore D, Derfler B . Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992; 258: 808–812.

    Article  CAS  PubMed  Google Scholar 

  28. Kirstetter P, Thomas M, Dierich A, Kastner P, Chan S . Ikaros is critical for B cell differentiation and function. Eur J Immunol 2002; 32: 720–730.

    Article  CAS  PubMed  Google Scholar 

  29. Lopez RA, Schoetz S, DeAngelis K, O’Neill D, Bank A . Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci USA 2002; 99: 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mullighan C, Miller C, Radtke I, Phillips L, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  31. Iacobucci I, Storlazzi C, Cilloni D, Lonetti A, Ottaviani E, Soverini S et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009; 114: 2159–2167.

    Article  CAS  PubMed  Google Scholar 

  32. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  33. Mesa R, Li C, Ketterling R, Schroeder G, Knudson R, Tefferi A . Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005; 105: 973–977.

    Article  CAS  PubMed  Google Scholar 

  34. Mullighan C, Su X, Zhang J, Radtke I, Phillips L, Miller C et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martinelli G, Iacobucci I, Storlazzi C, Vignetti M, Paoloni F, Cilloni D et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 2009; 27: 5202–5207.

    Article  CAS  PubMed  Google Scholar 

  36. Luna-Fineman S, Shannon KM, Lange BJ . Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood 1995; 85: 1985–1999.

    CAS  PubMed  Google Scholar 

  37. Lacronique V, Boureux A, Valle V, Poirel H, Quang C, Mauchauffé M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  38. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667.

    Article  CAS  PubMed  Google Scholar 

  39. Griesinger F, Hennig H, Hillmer F, Podleschny M, Steffens R, Pies A et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005; 44: 329–333.

    Article  CAS  PubMed  Google Scholar 

  40. Mercher T, Wernig G, Moore S, Levine R, Gu T, Fröhling S et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006; 108: 2770–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood 2009; 113: 646–648.

    Article  CAS  PubMed  Google Scholar 

  42. Mullighan C, Zhang J, Harvey R, Collins-Underwood J, Schulman B, Phillips L et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2009; 106: 9414–9418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by funding from the Austrian Academy of Sciences, the Austrian Science Fund (FWF, P20033-B11) and the MPD Foundation, as well as from AIRC (Associazione Italiana per la Ricerca sul Cancro, Milan), Fondazione Cariplo (Milan), PRIN-MIUR (Rome) and Alleanza Contro il Cancro (Rome), all in Italy. We thank Sebastian Nijman, Markus Muellner and Nils Craig-Mueller for technical assistance and advice and Helen Pickersgill for helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kralovics.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, R., Gisslinger, H., Passamonti, F. et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 24, 1290–1298 (2010). https://doi.org/10.1038/leu.2010.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.99

Keywords

This article is cited by

Search

Quick links