Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

SHIP-1 inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic cells by promoting CD95 glycosylation independently of its phosphatase activity

Abstract

SHIP-1 (SH2 (Src homology 2)-containing inositol 5′-phosphatase-1) functions as a negative regulator of immune responses by hydrolyzing phosphatidylinositol-3,4,5-triphosphate generated by phosphoinositide-3 (PI 3)-kinase activity. As a result, SHIP-1 deficiency in mice results in myeloproliferation and B-cell lymphoma. On the other hand, SHIP-1-deficient mice have a reduced T-cell population, but the underlying mechanisms are unknown. In this work, we hypothesized that SHIP-1 plays anti-apoptotic functions in T cells upon stimulation of the death receptor CD95/APO-1/Fas. Using primary T cells from SHIP-1−/− mice and T leukemic cell lines, we report that SHIP-1 is a potent inhibitor of CD95-induced death. We observed that a small fraction of the SHIP-1 pool is localized to the endoplasmic reticulum (ER), in which it promotes CD95 glycosylation. This post-translational modification requires an intact SH2 domain of SHIP-1, but is independent of its phosphatase activity. The glycosylated CD95 fails to oligomerize upon stimulation, resulting in impaired death-inducing signaling complex (DISC) formation and downstream apoptotic cascade. These results uncover an unanticipated inhibitory function for SHIP-1 and emphasize the role of glycosylation in the regulation of CD95 signaling in T cells. This work may also provide a new basis for therapeutic strategies using compounds inducing apoptosis through the CD95 pathway on SHIP-1-negative leukemic T cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Krammer PH, Arnold R, Lavrik IN . Life and death in peripheral T cells. Nat Rev Immunol 2007; 7: 532–542.

    Article  CAS  PubMed  Google Scholar 

  2. Strasser A, Jost PJ, Nagata S . The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30: 180–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peter ME, Krammer PH . The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  CAS  PubMed  Google Scholar 

  4. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H, Zhu H, Xu CJ, Yuan J . Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  CAS  PubMed  Google Scholar 

  6. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  7. Krystal G . Lipid phosphatases in the immune system. Semin Immunol 2000; 12: 397–403.

    Article  CAS  PubMed  Google Scholar 

  8. Pesesse X, Backers K, Moreau C, Zhang J, Blero D, Paternotte N et al. SHIP1/2 interaction with tyrosine phosphorylated peptides mimicking an immunoreceptor signalling motif. Adv Enzyme Regul 2006; 46: 142–153.

    Article  CAS  PubMed  Google Scholar 

  9. Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009; 114: 1374–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 1998; 12: 1610–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 1999; 13: 786–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D . Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009; 106: 7113–7118.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R . Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2004; 12: 420–426.

    CAS  PubMed  Google Scholar 

  14. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Harris SJ, Parry RV, Westwick J, Ward SG . Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J Biol Chem 2008; 283: 2465–2469.

    Article  CAS  PubMed  Google Scholar 

  17. Gloire G, Erneux C, Piette J . The role of SHIP1 in T-lymphocyte life and death. Biochem Soc Trans 2007; 35 (Part 2): 277–280.

    Article  CAS  PubMed  Google Scholar 

  18. Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U et al. Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5′-phosphatase are required for regulation of CD4+CD25+ T cell development. J Immunol 2006; 176: 3958–3965.

    Article  CAS  PubMed  Google Scholar 

  19. Locke NR, Patterson SJ, Hamilton MJ, Sly LM, Krystal G, Levings MK . SHIP regulates the reciprocal development of T regulatory and Th17 cells. J Immunol 2009; 183: 975–983.

    Article  CAS  PubMed  Google Scholar 

  20. Collazo MM, Wood D, Paraiso KH, Lund E, Engelman RW, Le CT et al. SHIP limits immunoregulatory capacity in the T-cell compartment. Blood 2009; 113: 2934–2944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gloire G, Charlier E, Rahmouni S, Volanti C, Chariot A, Erneux C et al. Restoration of SHIP-1 activity in human leukemic cells modifies NF-kappaB activation pathway and cellular survival upon oxidative stress. Oncogene 2006; 25: 5485–5494.

    Article  CAS  PubMed  Google Scholar 

  22. Drayer AL, Pesesse X, De Smedt F, Woscholski R, Parker P, Erneux C . Cloning and expression of a human placenta inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Biochem Biophys Res Commun 1996; 225: 243–249.

    Article  CAS  PubMed  Google Scholar 

  23. Sirven A, Ravet E, Charneau P, Zennou V, Coulombel L, Guetard D et al. Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Mol Ther 2001; 3: 438–448.

    Article  CAS  PubMed  Google Scholar 

  24. Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med 2006; 203: 2509–2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruyns C, Pesesse X, Moreau C, Blero D, Erneux C . The two SH2-domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are coexpressed in human T lymphocytes. Biol Chem 1999; 380: 969–974.

    Article  CAS  PubMed  Google Scholar 

  26. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG . Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 2002; 169: 5441–5450.

    Article  CAS  PubMed  Google Scholar 

  27. Lo TC, Barnhill LM, Kim Y, Nakae EA, Yu AL, Diccianni MB . Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk Res 2009; 33: 1562–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peter ME, Hellbardt S, Schwartz-Albiez R, Westendorp MO, Walczak H, Moldenhauer G et al. Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ 1995; 2: 163–171.

    CAS  PubMed  Google Scholar 

  29. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 1992; 267: 10709–10715.

    CAS  PubMed  Google Scholar 

  30. Dorrie J, Sapala K, Zunino SJ . Interferon-gamma increases the expression of glycosylated CD95 in B-leukemic cells: an inducible model to study the role of glycosylation in CD95-signalling and trafficking. Cytokine 2002; 18: 98–107.

    Article  PubMed  Google Scholar 

  31. Ju T, Cummings RD . A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA 2002; 99: 16613–16618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukuda M . Roles of mucin-type O-glycans synthesized by core2beta1,6-N-acetylglucosaminyltransferase. Methods Enzymol 2006; 416: 332–346.

    Article  CAS  PubMed  Google Scholar 

  33. Helenius A, Aebi M . Intracellular functions of N-linked glycans. Science 2001; 291: 2364–2369.

    Article  CAS  PubMed  Google Scholar 

  34. Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG . The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 1992; 68: 545–560.

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt-Arras DE, Bohmer A, Markova B, Choudhary C, Serve H, Bohmer FD . Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol 2005; 25: 3690–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hebert M, Potin S, Sebbagh M, Bertoglio J, Breard J, Hamelin J . Rho-ROCK-dependent ezrin-radixin-moesin phosphorylation regulates Fas-mediated apoptosis in Jurkat cells. J Immunol 2008; 181: 5963–5973.

    Article  CAS  PubMed  Google Scholar 

  37. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16: 2794–2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP . Impaired Fas response and autoimmunity in Pten+/- mice. Science 1999; 285: 2122–2125.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14: 523–534.

    Article  CAS  PubMed  Google Scholar 

  40. Tarasenko T, Kole HK, Chi AW, Mentink-Kane MM, Wynn TA, Bolland S . T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad Sci USA 2007; 104: 11382–11387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, Wildemann B et al. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol 2005; 175: 32–36.

    Article  CAS  PubMed  Google Scholar 

  42. Ju T, Aryal RP, Stowell CJ, Cummings RD . Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 2008; 182: 531–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horn S, Endl E, Fehse B, Weck MM, Mayr GW, Jucker M . Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle. Leukemia 2004; 18: 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Palma L, Horn S, Haag F, Diessenbacher P, Streichert T, Mayr GW et al. Up-regulation of the T cell quiescence factor KLF2 in a leukaemic T-cell line after expression of the inositol 5′-phosphatase SHIP-1. Br J Haematol 2005; 131: 628–631.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Belgian National Fund for Scientific Research (FNRS, Brussels, Belgium), the Interuniversity Attraction Pole (IAP6/18, Brussels, Belgium), the concerted research action program (ARC04/09-323) and the ‘fond anticancéreux près l’Université de Liège’. CE was supported by grants from the IAP6/28 and the FNRS. AD and SMH are grateful for financial support from the Biotechnology and Biological Sciences Research Council (BBF0083091). We thank Dr S Ormenese from the imaging and flow cytometry GIGA-Research technological platform for FACS analysis, Dr S Ward for providing Tet-regulated Jurkat CD2:SHIP-1 cells, Dr E Ravet for providing TRIPΔU3 lentiviral vector and for technical advices and Drs I Lavrik and P Krammer for technical advices and helpful comments. EC was supported by the Télévie (FNRS, Brussels). GG, SR, AC and JP are Postdoctoral Researcher, Research Associate, Senior Research Associate and Research Director from the FNRS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gloire.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlier, E., Condé, C., Zhang, J. et al. SHIP-1 inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic cells by promoting CD95 glycosylation independently of its phosphatase activity. Leukemia 24, 821–832 (2010). https://doi.org/10.1038/leu.2010.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.9

Keywords

This article is cited by

Search

Quick links