Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Wilms’ tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells

Abstract

Wilms’ tumor gene 1 (WT1) is a transcription factor involved in developmental processes. In adult hematopoiesis, only a small portion of early progenitor cells express WT1, whereas most leukemias show persistently high levels, suggesting an oncogenic role. We have previously characterized oncogenic BCR/ABL1 tyrosine kinase signaling pathways for increased WT1 expression. In this study, we show that overexpression of BCR/ABL1 in CD34+ progenitor cells leads to reduced expression of interferon regulatory factor 8 (IRF8), in addition to increased WT1 expression. Interestingly, IRF8 is known as a tumor suppressor in some leukemias and we investigated whether WT1 might repress IRF8 expression. When analyzed in four leukemia mRNA expression data sets, WT1 and IRF8 were anticorrelated. Upon overexpression in CD34+ progenitors, as well as in U937 cells, WT1 strongly downregulated IRF8 expression. All four major WT1 splice variants induced repression, but not the zinc-finger-deleted WT1 mutant, indicating dependence on DNA binding. A reporter construct with the IRF8 promoter was repressed by WT1, dependent on a putative WT1-response element. Binding of WT1 to the IRF8 promoter was demonstrated by chromatin immunoprecipitation. Our results identify IRF8 as a direct target gene for WT1 and provide a possible mechanism for oncogenic effects of WT1 in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lee SB, Haber DA . Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264: 74–99.

    Article  CAS  PubMed  Google Scholar 

  2. Scharnhorst V, van der Eb AJ, Jochemsen AG . WT1 proteins: functions in growth and differentiation. Gene 2001; 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  3. Fraizer GC, Patmasiriwat P, Zhang X, Saunders GF . Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow. Blood 1995; 86: 4704–4706.

    CAS  PubMed  Google Scholar 

  4. Baird PN, Simmons PJ . Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25: 312–320.

    CAS  PubMed  Google Scholar 

  5. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L . The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol 1997; 25: 945–950.

    CAS  PubMed  Google Scholar 

  6. Menssen HD, Renkl HJ, Entezami M, Thiel E . Wilms’ tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood 1997; 89: 3486–3487.

    CAS  PubMed  Google Scholar 

  7. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  8. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007; 21: 1783–1791.

    Article  CAS  PubMed  Google Scholar 

  9. Alberta JA, Springett GM, Rayburn H, Natoli TA, Loring J, Kreidberg JA et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003; 101: 2570–2574.

    Article  CAS  PubMed  Google Scholar 

  10. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with Wilms’ tumor gene, WT1. Blood 2005; 107: 3303–3312.

    Article  PubMed  Google Scholar 

  11. Miwa H, Beran M, Saunders GF . Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

    CAS  PubMed  Google Scholar 

  12. Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I . Expression of the candidate Wilm's tumor gene, WT1, in human leukemia cells. Leukemia 1993; 7: 970–977.

    CAS  PubMed  Google Scholar 

  13. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  14. Menssen HD, Renkl HJ, Rodeck U, Maurer J, Notter M, Schwartz S et al. Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 1995; 9: 1060–1067.

    CAS  PubMed  Google Scholar 

  15. Inoue K, Tamaki H, Ogawa H, Oka Y, Soma T, Tatekawa T et al. Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 1998; 91: 2969–2976.

    CAS  PubMed  Google Scholar 

  16. Svedberg H, Chylicki K, Baldetorp B, Rauscher 3rd FJ, Gullberg U . Constitutive expression of the Wilms’ tumor gene (WT1) in the leukemic cell line U937 blocks parts of the differentiation program. Oncogene 1998; 16: 925–932.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Tamaki H, Oji Y et al. Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res 1999; 23: 499–505.

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Han Y, Suarez Saiz F, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  PubMed  Google Scholar 

  19. Tamura T, Yanai H, Savitsky D, Taniguchi T . The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26: 535–584.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 1998; 91: 22–29.

    CAS  PubMed  Google Scholar 

  21. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    Article  CAS  PubMed  Google Scholar 

  22. Hao SX, Ren R . Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20: 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K . ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102: 4547–4554.

    Article  CAS  PubMed  Google Scholar 

  24. Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood 2004; 103: 3480–3489.

    Article  CAS  PubMed  Google Scholar 

  25. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gurevich RM, Rosten PM, Schwieger M, Stocking C, Humphries RK . Retroviral integration site analysis identifies ICSBP as a collaborating tumor suppressor gene in NUP98-TOP1-induced leukemia. Exp Hematol 2006; 34: 1192–1201.

    Article  CAS  PubMed  Google Scholar 

  27. Konieczna I, Horvath E, Wang H, Lindsey S, Saberwal G, Bei L et al. Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest 2008; 118: 853–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koenigsmann J, Rudolph C, Sander S, Kershaw O, Gruber AD, Bullinger L et al. Nf1 haploinsufficiency and ICSBP deficiency synergize in the development of leukemias. Blood 2009; 113: 4690–4701.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt M, Bies J, Tamura T, Ozato K, Wolff L . The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 2004; 103: 4142–4149.

    Article  CAS  PubMed  Google Scholar 

  30. Edvardsson L, Dykes J, Olsson ML, Olofsson T . Clonogenicity, gene expression and phenotype during neutrophil versus erythroid differentiation of cytokine-stimulated CD34+ human marrow cells in vitro. Br J Haematol 2004; 127: 451–463.

    Article  PubMed  Google Scholar 

  31. Ginzinger DG . Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 2002; 30: 503–512.

    Article  CAS  PubMed  Google Scholar 

  32. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  33. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemias. Blood 2008; 112: 4193–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematological 2009; 94: 131–134.

    Article  Google Scholar 

  35. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia 2006; 20: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  36. Svensson E, Vidovic K, Lassen C, Richter J, Olofsson T, Fioretos T et al. Deregulation of the Wilms’ tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells. Leukemia 2007; 21: 2485–2494.

    Article  CAS  PubMed  Google Scholar 

  37. Cilloni D, Messa F, Gottardi E, Fava M, Arruga F, Defilippi I et al. Sensitivity to imatinib therapy may be predicted by testing Wilms tumor gene expression and colony growth after a short in vitro incubation. Cancer 2004; 101: 979–988.

    Article  CAS  PubMed  Google Scholar 

  38. Rong Y, Cheng L, Ning H, Zou J, Zhang Y, Xu F et al. Wilms’ tumor 1 and signal transducers and activators of transcription 3 synergistically promote cell proliferation: a possible mechanism in sporadic Wilms’ tumor. Cancer Res 2006; 66: 8049–8057.

    Article  CAS  PubMed  Google Scholar 

  39. Egwuagu CE, Li W, Yu CR, Che Mei Lin M, Chan CC, Nakamura T et al. Interferon-gamma induces regression of epithelial cell carcinoma: critical roles of IRF-1 and ICSBP transcription factors. Oncogene 2006; 25: 3670–3679.

    Article  CAS  PubMed  Google Scholar 

  40. Yang D, Thangaraju M, Browning DD, Dong Z, Korchin B, Lev DC et al. Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res 2007; 67: 3301–3309.

    Article  CAS  PubMed  Google Scholar 

  41. McGough JM, Yang D, Huang S, Georgi D, Hewitt SM, Röcken C et al. DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol Cancer Res 2008; 6: 1841–1851.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gebhard C, Schwarzfischer L, Pham TH, Andreesen R, Mackensen A, Rehli M . Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res 2006; 34: e82.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tshuikina M, Nilsson K, Oberg F . Positive histone marks are associated with active transcription from a methylated ICSBP/IRF8 gene. Gene 2008; 410: 259–267.

    Article  CAS  PubMed  Google Scholar 

  44. Lee KY, Geng H, Ng KM, Yu J, van Hasselt A, Cao Y et al. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene 2008; 27: 5267–5276.

    Article  CAS  PubMed  Google Scholar 

  45. Laity JH, Dyson HJ, Wright PE . Molecular basis for modulation of biological function by alternate splicing of the Wilms’ tumor suppressor protein. Proc Natl Acad Sci USA 2000; 97: 11932–11935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ . A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 1996; 12: 1005–1014.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Thoas Fioretos (Lund, Sweden) for providing us with the KU812, LAMA-84 and JK-1 cell lines and Dr F Rauscher III (Philadelphia, PA) for the kind gift of the pCMV-CB6+/WT1 (+17aa, -KTS) plasmid. This study was supported by grants from the Medical Faculty of Lund (ALF), the Swedish Cancer Society, the Swedish Research Council, the Swedish Children's Cancer Foundation, the Gunnar Nilsson Cancer Foundation, the Österlund Foundation and funds from Lund University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Gullberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidovic, K., Svensson, E., Nilsson, B. et al. Wilms’ tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia 24, 992–1000 (2010). https://doi.org/10.1038/leu.2010.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.33

Keywords

This article is cited by

Search

Quick links