Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Role of BCR-ABL-Y177-mediated p27kip1 phosphorylation and cytoplasmic localization in enhanced proliferation of chronic myeloid leukemia progenitors

Abstract

In chronic myelogenous leukemia (CML), hematopoietic stem cell transformation leads to increased proliferation of malignant myeloid progenitors. The cyclin-dependent kinase inhibitor p27kip1 (p27) is a critical negative regulator of hematopoietic progenitor proliferation and pool size that is deregulated in BCR-ABL expressing cell lines. However, cell-context specific regulation of p27 in primary human CML progenitors and its contribution to CML progenitor expansion remain unclear. Here, we investigated p27 regulation and function in (1) CD34+ cells from CML patients and (2) human CD34+ cells ectopically expressing the BCR-ABL gene following retrovirus transduction. We found that p27 levels are increased in CML CD34+ cells related to a BCR-ABL-dependent increase in p27 protein translation. However, p27 was relocated to the cytoplasm in CML progenitors and nuclear p27 levels were reduced, allowing increased cell cycling and expansion in culture. Cytoplasmic relocation of p27 in CML progenitors was related to signaling through BCR-ABL Y177, activation of the AKT kinase and phosphorylation of p27 on Thr-157 (T157). Expression of a mutant p27 that cannot be phosphorylated on T157 significantly inhibited CML progenitor proliferation. These studies show the importance of BCR-ABL-Y177-AKT-mediated p27 phosphorylation in altered p27 localization and enhanced proliferation and expansion of primary CML progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  2. Holyoake TL, Jiang X, Drummond MW, Eaves AC, Eaves CJ . Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 2002; 16: 549–558.

    Article  CAS  PubMed  Google Scholar 

  3. Bhatia R, Munthe HA, Williams AD, Zhang F, Forman SJ, Slovak ML . Increased sensitivity of chronic myelogenous leukemia primitive hematopoietic progenitors to growth factor induced cell division and maturation. Exp Hematol 2000; 12: 1401–1412.

    Article  Google Scholar 

  4. Eaves AC, Cashman JD, Gaboury LA, Kalousek DK, Eaves CJ . Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells. Proc Natl Acad Sci USA 1986; 83: 5306–5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Traycoff CM, Halstead B, Rice S, McMahel J, Srour EF, Cornetta K . Chronic myelogenous leukaemia CD34+ cells exit G0/G1 phases of cell cycle more rapidly than normal marrow CD34+ cells. Br J Haematol 1998; 102: 759–767.

    Article  CAS  PubMed  Google Scholar 

  6. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  7. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  8. Chu S, Li L, Singh H, Bhatia R . BCR-tyrosine 177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res 2007; 67: 7045–7053.

    Article  CAS  PubMed  Google Scholar 

  9. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99: 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21: 840–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    Article  CAS  PubMed  Google Scholar 

  12. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59–66.

    Article  CAS  PubMed  Google Scholar 

  13. Chandramohan V, Jeay S, Pianetti S, Sonenshein GE . Reciprocal control of Forkhead box O 3a and c-Myc via the phosphatidylinositol 3-kinase pathway coordinately regulates p27Kip1 levels. J Immunol 2004; 172: 5522–5527.

    Article  CAS  PubMed  Google Scholar 

  14. Hengst L, Reed SI . Translational control of p27Kip1 accumulation during the cell cycle. Science 1996; 271: 1861–1864.

    Article  CAS  PubMed  Google Scholar 

  15. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8: 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  16. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  17. Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  18. Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T et al. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 2002; 277: 2302–2310.

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H . p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 1999; 9: 661–664.

    Article  CAS  PubMed  Google Scholar 

  20. Bloom J, Pagano M . Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 2003; 13: 41–47.

    Article  CAS  PubMed  Google Scholar 

  21. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10–17.

    Article  CAS  PubMed  Google Scholar 

  22. Scheijen B, Ngo HT, Kang H, Griffin JD . FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004; 23: 3338–3349.

    Article  CAS  PubMed  Google Scholar 

  23. Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 2007; 128: 281–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 2007; 128: 269–280.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT . Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 2000; 6: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  26. Andreu EJ, Lledo E, Poch E, Ivorra C, Albero MP, Martinez-Climent JA et al. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 2005; 65: 3264–3272.

    Article  CAS  PubMed  Google Scholar 

  27. Jonuleit T, van der Kuip H, Miething C, Michels H, Hallek M, Duyster J et al. Bcr-Abl kinase down-regulates cyclin-dependent kinase inhibitor p27 in human and murine cell lines. Blood 2000; 96: 1933–1939.

    CAS  PubMed  Google Scholar 

  28. Komatsu N, Watanabe T, Uchida M, Mori M, Kirito K, Kikuchi S et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J Biol Chem 2003; 278: 6411–6419.

    Article  CAS  PubMed  Google Scholar 

  29. Tomoda K, Kato JY, Tatsumi E, Takahashi T, Matsuo Y, Yoneda-Kato N . The Jab1/COP9 signalosome subcomplex is a downstream mediator of Bcr-Abl kinase activity and facilitates cell-cycle progression. Blood 2005; 105: 775–783.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Zhao RC, Verfaillie CM . Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci USA 2000; 97: 10538–10543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao RC, Jiang Y, Verfaillie CM . A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34(+) cells with a BCR/ABL-containing retroviral vector. Blood 2001; 97: 2406–2412.

    Article  CAS  PubMed  Google Scholar 

  32. Ramaraj P, Singh H, Niu N, Chu S, Holtz M, Yee JK et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res 2004; 64: 5322–5331.

    Article  CAS  PubMed  Google Scholar 

  33. Bhatia R, McGlave PB, Dewald GW, Blazar BR, Verfaillie CM . Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 1995; 85: 3636–3645.

    CAS  PubMed  Google Scholar 

  34. Chu S, Holtz M, Gupta M, Bhatia R . BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  35. Moeller SJ, Head ED, Sheaff RJ . p27Kip1 inhibition of GRB2-SOS formation can regulate Ras activation. Mol Cell Biol 2003; 23: 3735–3752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chau BN, Wang JY . Coordinated regulation of life and death by RB. Nat Rev Cancer 2003; 3: 130–138.

    Article  CAS  PubMed  Google Scholar 

  37. Miskimins WK, Wang G, Hawkinson M, Miskimins R . Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol Cell Biol 2001; 21: 4960–4967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Millard SS, Yan JS, Nguyen H, Pagano M, Kiyokawa H, Koff A . Enhanced ribosomal association of p27(Kip1) mRNA is a mechanism contributing to accumulation during growth arrest. J Biol Chem 1997; 272: 7093–7098.

    Article  CAS  PubMed  Google Scholar 

  39. Perrotti D, Turturro F, Neviani P . BCR/ABL, mRNA translation and apoptosis. Cell Death Differ 2005; 12: 534–540.

    Article  CAS  PubMed  Google Scholar 

  40. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007; 26: 3699–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agarwal A, Bumm TG, Corbin AS, O'Hare T, Loriaux M, VanDyke J et al. Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Blood 2008; 112: 1960–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 CA95684, R01 HL77847 (RB) and General Clinical Research Center Grant #5M01. We acknowledge the excellent technical support of the City of Hope Analytical Cytometry Core and the Light Microscopy Digital Imaging Core. We thank Allen Lin for assistance with obtaining samples and StemCyte for their generous gift of cord blood samples. We thank Dr J Slingerland, University of Miami, for the p27 and p27 T157A constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bhatia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions: SC designed and performed research, analyzed data and wrote manuscript; TM performed experiments and reviewed manuscript; RB designed study, analyzed data and wrote manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, S., McDonald, T. & Bhatia, R. Role of BCR-ABL-Y177-mediated p27kip1 phosphorylation and cytoplasmic localization in enhanced proliferation of chronic myeloid leukemia progenitors. Leukemia 24, 779–787 (2010). https://doi.org/10.1038/leu.2010.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.24

Keywords

This article is cited by

Search

Quick links