Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells

Abstract

Autophagy, a tightly regulated lysosome-dependent catabolic pathway, is important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. However, the role of autophagy in leukemia still remains largely unknown. Here we show that high-mobility group box 1 (HMGB1), the best characterized damage-associated molecular pattern, was released from leukemia cell lines after chemotherapy-induced cytotoxicity and activated autophagy to protect against injury. Treatment with HMGB1-neutralizing antibodies increased the sensitivity of leukemia cells to chemotherapy; whereas, exogenous HMGB1 rendered these cells more resistant to drug-induced cytotoxicity. Moreover, exogenous HMGB1 increased autophagy as evaluated by increased expression of the autophagic marker microtubule-associated protein light chain 3-II, degradation of sequestosome 1 (p62) and autophagosome formation. Furthermore, knockdown or pharmacological inhibition of either phosphoinositide 3-kinase-III or extracellular signal-regulated kinase kinase mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase inhibited HMGB1-induced autophagy. Taken together, these results suggest that HMGB1 release after chemotherapy is a critical regulator of autophagy and a potential drug target for therapeutic interventions in leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kondo Y, Kanzawa T, Sawaya R, Kondo S . The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726–734.

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N, Yoshimori T, Levine B . Methods in mammalian autophagy research. Cell 2010; 140: 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. White E, DiPaola RS . The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15: 5308–5316.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Livesey KM, Tang D, Zeh HJ, Lotze MT . Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 2009; 10: 1269–1279.

    CAS  PubMed  Google Scholar 

  5. Maclean KH, Dorsey FC, Cleveland JL, Kastan MB . Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 2008; 118: 79–88.

    Article  CAS  PubMed  Google Scholar 

  6. Lotze MT, Tracey KJ . High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331–342.

    Article  CAS  PubMed  Google Scholar 

  7. Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X . Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock 2005; 23: 434–440.

    Article  CAS  PubMed  Google Scholar 

  8. Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao W et al. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med 2008; 36: 291–295.

    Article  CAS  PubMed  Google Scholar 

  9. Tang D, Kang R, Zeh III HJ, Lotze MT . High-mobility group box 1 and cancer. Biochim Biophys Acta 2010; 1799: 131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campana L, Bosurgi L, Rovere-Querini P . HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 2008; 20: 518–523.

    Article  CAS  PubMed  Google Scholar 

  11. Tang D, Kang R, Livesey KM, Cheh C, Adam Farkas A, Loughran P et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190: 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29: 5299–5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 2010; 17: 666–676.

    Article  CAS  PubMed  Google Scholar 

  14. Xie M, Kang R, Yu Y, Zhu S, He YL, Xu WQ et al. Enhancive effect of HMGB1 gene silence on adriamycin-induced apoptosis in K562/A02 drug resistance leukemia cells. Zhonghua Xue Ye Xue Za Zhi 2008; 29: 549–552.

    CAS  PubMed  Google Scholar 

  15. Yu Y, Xie M, He YL, Xu WQ, Zhu S, Cao LZ . Role of high mobility group box 1 in adriamycin-induced apoptosis in leukemia K562 cells. Ai Zheng 2008; 27: 929–933.

    CAS  PubMed  Google Scholar 

  16. Kang R, Tang D, Yu Y, Wang Z, Hu T, Wang H et al. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia 2010; 24: 177–186.

    Article  CAS  PubMed  Google Scholar 

  17. Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y et al. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (Hydrogen Peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 2007; 178: 7376–7384.

    Article  CAS  PubMed  Google Scholar 

  18. Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 2007; 81: 741–747.

    Article  CAS  PubMed  Google Scholar 

  19. Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X . The Anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 2007; 179: 1236–1244.

    Article  CAS  PubMed  Google Scholar 

  20. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL . Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143–164.

    Article  CAS  PubMed  Google Scholar 

  21. Bell CW, Jiang W, Reich III CF, Pisetsky DS . The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 2006; 291: C1318–C1325.

    Article  CAS  PubMed  Google Scholar 

  22. Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am J Respir Cell Mol Biol 2009; 41: 651–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009; 119: 1109–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007; 110: 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131–24145.

    Article  CAS  PubMed  Google Scholar 

  26. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    Article  CAS  PubMed  Google Scholar 

  27. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P . Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275: 992–998.

    Article  CAS  PubMed  Google Scholar 

  28. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  29. Ross DD . Novel mechanisms of drug resistance in leukemia. Leukemia 2000; 14: 467–473.

    Article  CAS  PubMed  Google Scholar 

  30. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–360.

    Article  CAS  PubMed  Google Scholar 

  31. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220: 47–59.

    Article  CAS  PubMed  Google Scholar 

  32. Kang R, Tang DL, Cao LZ, Yu Y, Zhang GY, Xiao XZ . High mobility group box 1 is increased in children with acute lymphocytic leukemia and stimulates the release of tumor necrosis factor-alpha in leukemic cell. Zhonghua Er Ke Za Zhi 2007; 45: 329–333.

    PubMed  Google Scholar 

  33. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D et al. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 2009; 7: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maeda S, Hikiba Y, Shibata W, Ohmae T, Yanai A, Ogura K et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem Biophys Res Commun 2007; 360: 394–400.

    Article  CAS  PubMed  Google Scholar 

  35. Liang X, Chavez AR, Schapiro NE, Loughran P, Thorne SH, Amoscato AA et al. Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukoc Biol 2009; 86: 599–607.

    Article  CAS  PubMed  Google Scholar 

  36. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A . Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68: 1485–1494.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Lian H, Zhao Y, Kauss MA, Spindel S . Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 2008; 283: 25596–25605.

    Article  CAS  PubMed  Google Scholar 

  38. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  39. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001; 2: 330–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhuang ZY, Xu H, Clapham DE, Ji RR . Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004; 24: 8300–8309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG . Inhibition of phosphatidylinositol 3-kinase- and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells. J Biol Chem 2004; 279: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  42. Ozaki K, Kosugi M, Baba N, Fujio K, Sakamoto T, Kimura S et al. Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib. Biochem Biophys Res Commun 2010; 391: 1610–1615.

    Article  CAS  PubMed  Google Scholar 

  43. Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P . Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood 2005; 105: 4013–4020.

    Article  CAS  PubMed  Google Scholar 

  44. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M et al. HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 2008; 87: 23–33.

    Article  CAS  PubMed  Google Scholar 

  46. Sivaprasad U, Basu A . Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 2008; 12: 1265–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D et al. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 2009; 284: 21412–21424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Natural Sciences Foundation of China (30571982, 30772353, 30973234 to LC, 30500485 to DT), Doctoral Program of Higher Education of China (20070533042 to LC), and a grant from University of Pittsburgh (DT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Tang or L Cao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Yang, M., Kang, R. et al. HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 25, 23–31 (2011). https://doi.org/10.1038/leu.2010.225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.225

Keywords

This article is cited by

Search

Quick links