Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Innate immunity as orchestrator of stem cell mobilization

Abstract

Hematopoietic stem and progenitor cells (HSPCs), as well as other types of stem cells, circulate under steady-state conditions at detectable levels in peripheral blood (PB), with their numbers increasing in response to stress, inflammation and tissue/organ injury. This mobilization process may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical or infection-induced tissue damage that recruits into PB different types of stem cells that have a role in immune surveillance and organ/tissue regeneration. Mobilization is also significantly enhanced by the administration of pharmacological agents, which has been exploited in hematological transplantology as a means to obtain HSPCs for hematopoietic reconstitution. In this review we will present mounting evidence that innate immunity orchestrates this evolutionarily conserved mechanism of HSPC mobilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Baron MH . Embryonic origins of mammalian hematopoiesis. Exp Hematol 2003; 31: 1160–1169.

    Article  CAS  PubMed  Google Scholar 

  2. Weissman I, Papaioannou V, Gardner R . Fetal hematopoietic origins of the adult hemolymphoid system. In Differentiation of Normal and Neoplastic Cells, (ed. B Clarkson, P Mark, J Till Cold Spring Harbor Lab. Press: New York, ) 1978, 33–47.

    Google Scholar 

  3. Lux CT, Yoshimoto M, McGrath K, Conway SJ, Palis J, Yoder MC . All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 2008; 111: 3435–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J et al. Biomechanical forces promote embryonic haematopoiesis. Nature 2009; 459: 1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mascarenhas MI, Parker A, Dzierzak E, Ottersbach K . Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood 2009; 114: 4645–4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Godin I, Garcia-Porrero JA, Dieterlen-Lièvre F, Cumano A . Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 1999; 190: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL . The purification and characterization of fetal liver hematopoietic stem cell. Proc Natl Acad Sci USA 1995; 92: 10302–10306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T . Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003; 19: 257–267.

    Article  CAS  PubMed  Google Scholar 

  9. Nagasawa T . A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 2000; 72: 408–411.

    CAS  PubMed  Google Scholar 

  10. Luster AD, Alon R, von Andrian UH . Immune cell migration in inflammation: Present and future therapeutic targets. Nat Immunol 2005; 6: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  11. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    Article  CAS  PubMed  Google Scholar 

  12. Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ . Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 2008; 26: 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  13. Simón MF, Andrew C, Miriam M, Paul SF . Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 2009; 16: 235–242.

    Article  CAS  Google Scholar 

  14. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009; 107: 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  15. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 53: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  18. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    Article  CAS  PubMed  Google Scholar 

  19. Lee HM, Wysoczynski M, Liu R, Shin DM, Kucia M, Botto M et al. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 2010; 24: 573–582.

    Article  CAS  PubMed  Google Scholar 

  20. Slavin S, Mumcuoglu M, Landsberg-Weisz A, Kedar E . The use of recombinant cytokines for enhancing immunohematopoietic reconstitution following bone marrow transplantation. I. Effects of in vitro culturing with IL3 and GM-CSF on human and mouse bone marrow cells purged with mafosfamide. Bone Marrow Transplant 1989; 4: 459–464.

    CAS  PubMed  Google Scholar 

  21. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M et al. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23: 2052–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  24. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 1999; 104: 1199–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.

    Article  CAS  PubMed  Google Scholar 

  26. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    Article  CAS  PubMed  Google Scholar 

  27. Taichman RS . Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631–2639.

    Article  CAS  PubMed  Google Scholar 

  28. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 2004; 103: 110–119.

    Article  CAS  PubMed  Google Scholar 

  29. Hanel P, Andréa P, Graler MH . Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007; 21: 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  30. Seitz G, Boehmler AM, Kanz L, Möhle R . The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci 2005; 1044: 84–89.

    Article  CAS  PubMed  Google Scholar 

  31. Kozuka T, Ishimaru F, Fujii K, Masuda K, Kaneda K, Imai T et al. Plasma stromal cell-derived factor-1 during granulocyte colonystimulating factor-induced peripheral blood stem cell mobilization. Bone Marrow Transplant 2003; 31: 651–654.

    Article  CAS  PubMed  Google Scholar 

  32. Okajima F . Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 2002; 1582: 132–137.

    Article  CAS  PubMed  Google Scholar 

  33. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114: 1340–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Lévesque JP . Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 1998; 92: 3465–3473.

    Article  CAS  PubMed  Google Scholar 

  35. Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.

    Article  CAS  PubMed  Google Scholar 

  36. Levesque JP, Helwani FK, Winkler IG . The ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010, (submitted).

  37. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. Link DC. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  PubMed  Google Scholar 

  39. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 2007; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  40. Topcuoglu P, Arat M, Dalva K, Ozcan M . Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors. Bone Marrow Transplant 2004; 33: 171–176.

    Article  CAS  PubMed  Google Scholar 

  41. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  42. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J . Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986–995.

    Article  CAS  PubMed  Google Scholar 

  43. Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.

    Article  CAS  PubMed  Google Scholar 

  44. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    Article  CAS  PubMed  Google Scholar 

  45. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008; 181: 1232–1244.

    Article  CAS  PubMed  Google Scholar 

  47. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM . Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 2009; 4: 62–72.

    Article  CAS  PubMed  Google Scholar 

  48. Bonig H, Priestley GV, Oehler V, Papayannopoulou T . Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35: 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y . Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation. Bone Marrow Transplant 1993; 11: 103–108.

    CAS  PubMed  Google Scholar 

  50. Sato N, Sawada K, Takahashi TA, Mogi Y, Asano S, Koike T et al. A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 1994; 22: 973–978.

    CAS  PubMed  Google Scholar 

  51. Papayannopoulou T, Nakamoto B, Andrews RG, Lyman SD, Lee MY . In vivo effects of Flt3/Flk2 ligand on mobilization of hematopoietic progenitors in primates and potent synergistic enhancement with granulocyte colony-stimulating factor. Blood 1997; 90: 620–629.

    Article  CAS  PubMed  Google Scholar 

  52. Andrews RG, Briddell RA, Knitter GH, Opie T, Bronsden M, Myerson D et al. In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colonystimulating factor in baboons enhanced circulation of progenitor cells. Blood 1994; 84: 800–810.

    Article  CAS  PubMed  Google Scholar 

  53. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE . Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 1995; 85: 2269–2275.

    Article  CAS  PubMed  Google Scholar 

  54. Stiff P, Gingrich R, Luger S, Wyres MR, Brown RA, LeMaistre CF et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 2000; 26: 471–481.

    Article  CAS  PubMed  Google Scholar 

  55. To LB, Bashford J, Durrant S, MacMillan J, Schwarer AP, Prince HM et al. Successful mobilization of peripheral blood stem cells after addition of ancestim (stem cell factor) in patients who had failed a prior mobilization with filgrastim (granulocyte colonystimulating factor) alone or with chemotherapy plus filgrastim. Bone Marrow Transplant 2003; 31: 371–378.

    Article  CAS  PubMed  Google Scholar 

  56. Molineux G, Migdalska A, Szmitkowski M, Zsebo K, Dexter TM . The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 1991; 78: 961–966.

    Article  CAS  PubMed  Google Scholar 

  57. Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.

    Article  CAS  PubMed  Google Scholar 

  58. Molineux G, McCrea C, Yan XQ, Kerzic P, McNiece I . Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood 1997; 89: 3998–4004.

    Article  CAS  PubMed  Google Scholar 

  59. Pelus LM, Fukuda S . Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 2008; 22: 466–473.

    Article  CAS  PubMed  Google Scholar 

  60. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001; 97: 1534–1542.

    Article  CAS  PubMed  Google Scholar 

  62. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    Article  CAS  PubMed  Google Scholar 

  63. Fruehauf S, Seeger T, Topaly J . Innovative strategies for PBPC mobilization. Cytotherapy 2005; 7: 438–446.

    Article  CAS  PubMed  Google Scholar 

  64. Winkler IG, Levesque JP . Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34: 996–1009.

    Article  CAS  PubMed  Google Scholar 

  65. Bensinger W, Dipersio JF, McCarty JM . Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43: 181–195.

    Article  CAS  PubMed  Google Scholar 

  66. Sweeney EA, Priestley GV, Nakamoto B, Collins RG, Beaudet AL, Papayannopoulou T . Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Natl Acad Sci USA 2000; 97: 6544–6549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T . Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/ progenitor cells. Blood 2002; 99: 44–51.

    Article  CAS  PubMed  Google Scholar 

  68. Jalili A, Shirvaikar N, Marquez-Curtis L, Qui Y, Korol C, Lee H et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; 38: 321–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pruijt JF, Verzaal P, van Os R, de Kruijf EJ, van Schie ML, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002; 99: 6228–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wagner E, Frank MM . Therapeutic potential of complement modulation. Nat Rev Drug Discov 2010; 9: 43–56.

    Article  CAS  PubMed  Google Scholar 

  72. Walport MJ . Complement. First of two parts. N Engl J Med 2001; 344: 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  73. Holers VM . The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 2008; 223: 300–316.

    Article  CAS  PubMed  Google Scholar 

  74. Kemper C, Hourcade DE . Properdin: new roles in pattern recognition and target clearance. Mol Immunol 2008; 45: 4048–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thiel S . Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 2007; 44: 3875–3888.

    Article  CAS  PubMed  Google Scholar 

  76. Atkinson JP, Frank MM . Bypassing complement: evolutionary lessons and future implications. J Clin Invest 2006; 116: 1215–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ . Defective engraftment of C3aR−/− hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia 2009; 23: 1455–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tulamo R, Frösen J, Junnikkala S, Paetau A, Kangasniemi M, Peláez J et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest 2010; 90: 168–179.

    Article  CAS  PubMed  Google Scholar 

  79. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12: 682–687.

    Article  CAS  PubMed  Google Scholar 

  80. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  PubMed  Google Scholar 

  82. Del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RG, Schwartz MA . Integrins regulate Rac targeting by internalization of membrane domains. Science 2004; 303: 839–842.

    Article  CAS  PubMed  Google Scholar 

  83. Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG . Localized stabilization of microtubules by integrin- and FAKfacilitated Rho signaling. Science 2004; 303: 836–839.

    Article  CAS  PubMed  Google Scholar 

  84. Alewijnse AE, Peters SL . Sphingolipid signalling in the cardiovascular system: Good, bad or both? Eur J Pharmacol 2008; 585: 292–302.

    Article  CAS  PubMed  Google Scholar 

  85. Allende ML, Proia RL . Sphingosine-1- phosphate receptors and the development of the vascular system. Biochim Biophys Acta 2002; 1582: 222–227.

    Article  CAS  PubMed  Google Scholar 

  86. Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B . The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 2003; 101: 4739–4747.

    Article  CAS  PubMed  Google Scholar 

  87. Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65–72.

    Article  CAS  PubMed  Google Scholar 

  88. Eash KJ, Greenbaum AM, Gopalan PK, Link DC . CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120: 2423–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY . Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J 2000; 139: 94–100.

    Article  CAS  PubMed  Google Scholar 

  90. Lee H, Ratajczak MZ . Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp (Warsz) 2009; 57: 269–278.

    Article  CAS  Google Scholar 

  91. Sekhsaria S, Fleisher TA, Vowells S, Brown M, Miller J, Grodon I et al. Granulocyte colony-stimulating factor recruitment of CD34 progenitors to peripheral blood: Impaired mobilization in chronic granulomatous disease and adenosine deaminase– deficient severe combined immunodeficiency disease patients. Blood 1996; 88: 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  92. Velders GA, van Os R, Hagoort H, Verzaal P, Guiot HF, Lindley IJ et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 2004; 103: 340–346.

    Article  CAS  PubMed  Google Scholar 

  93. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosaninduced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171: 417–425.

    Article  CAS  PubMed  Google Scholar 

  94. Beutler BA . TLRs and innate immunity. Blood 2009; 113: 1399–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101: 3784–3793.

    Article  CAS  PubMed  Google Scholar 

  96. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007; 447: 1007–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoggatt J, Singh P, Sampath J, Pelus LM . Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009; 113: 5444–5455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pelus J, Hoggatt J . An emerging role for Eicosanoids in Hematopoietic Cell Trafficking. Leukemia 2010, (submitted).

  99. Reca R, Wysoczynski M, Yan J, Lambris JD, Ratajczak MZ . The role of third complement component (C3) in homing of hematopoietic stem/progenitor cells into bone marrow. Adv Exp Med Biol 2006; 586: 35–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grant R01 CA105847, NIH R01 DK070577 and European Union structural funds, Innovative Economy Operational Program POIG.01.01.01-00-109/09-01 and Stella and Henry Endowment to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Kim, C., Wojakowski, W. et al. Innate immunity as orchestrator of stem cell mobilization. Leukemia 24, 1667–1675 (2010). https://doi.org/10.1038/leu.2010.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.162

Keywords

This article is cited by

Search

Quick links