Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells

Abstract

Once cleaved by caspases, the Lyn tyrosine kinase (LynΔN) is relocalized from the plasma membrane to the cytoplasm of apoptotic cells, but the function of such a cleavage is incompletely understood. We evaluated the effect of LynΔN overexpression on imatinib sensitivity of the chronic myelogenous leukemia (CML) cell line K562. Therefore, we generated stable cells that express plasmids encoding LynΔN or its catalytically inactive counterpart LynΔNKD. We established that Lyn is cleaved in imatinib-treated parental K562 cells in a caspase-dependent manner. Lyn cleavage also occurred following BCR-ABL silencing by specific short hairpin RNA (sh-RNA). Imatinib-induced apoptosis was abrogated in LynΔN-overexpressing cells, but not in cells overexpressing its inactive counterpart. Conversely, the overexpression of LynΔN failed to affect the differentiation of K562 cells. Importantly, the protective effect of LynΔN was suppressed by two inhibitors of Lyn activity. LynΔN also inhibits imatinib-mediated caspase-3 activation in the small proportion of nilotinib-resistant K562 cells overexpressing Lyn that can engage an apoptotic program upon imatinib stimulation. Finally, Lyn knockdown by sh-RNA altered neither imatinib-mediated apoptosis nor differentiation. Taken together, our data show that the caspase-cleaved form of Lyn exerts a negative feedback on imatinib-mediated CML cell apoptosis that is entirely dependent on its kinase activity and likely on the BCR–ABL pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Schlessinger J . New roles for Src kinases in control of cell survival and angiogenesis. Cell 2000; 100: 293–296.

    Article  CAS  PubMed  Google Scholar 

  2. Parsons SJ, Parsons JT . Src family kinases, key regulators of signal transduction. Oncogene 2004; 23: 7906–7909.

    Article  CAS  PubMed  Google Scholar 

  3. Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Ilic D, Mori S et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995; 3: 549–560.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Koizumi T, Watanabe T . Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 1996; 184: 831–838.

    Article  CAS  PubMed  Google Scholar 

  5. Chan VW, Meng F, Soriano P, DeFranco AL, Lowell CA . Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 1997; 7: 69–81.

    Article  CAS  PubMed  Google Scholar 

  6. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995; 83: 301–311.

    Article  CAS  PubMed  Google Scholar 

  7. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark R et al. Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage. Immunity 2001; 15: 603–615.

    Article  CAS  PubMed  Google Scholar 

  8. Lannutti BJ, Minear J, Blake N, Drachman JG . Increased megakaryocytopoiesis in Lyn-deficient mice. Oncogene 2006; 25: 3316–3324.

    Article  CAS  PubMed  Google Scholar 

  9. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  10. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  PubMed  Google Scholar 

  11. Jacquel A, Herrant M, Legros L, Belhacene N, Luciano F, Pages G et al. Imatinib induces mitochondria-dependent apoptosis of the Bcr-Abl-positive K562 cell line and its differentiation toward the erythroid lineage. FASEB J 2003; 17: 2160–2162.

    Article  CAS  PubMed  Google Scholar 

  12. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  13. Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A et al. Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood 2004; 104: 3901–3910.

    Article  CAS  PubMed  Google Scholar 

  14. Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ et al. Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 2005; 24: 336–343.

    Article  CAS  PubMed  Google Scholar 

  15. Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB . Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res 2006; 66: 6468–6472.

    Article  CAS  PubMed  Google Scholar 

  16. Warmuth M, Bergmann M, Priess A, Hauslmann K, Emmerich B, Hallek M . The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem 1997; 272: 33260–33270.

    Article  CAS  PubMed  Google Scholar 

  17. Meyn III MA, Wilson MB, Abdi FA, Fahey N, Schiavone AP, Wu J et al. Src family kinases phosphorylate the Bcr-Abl SH3-SH2 region and modulate Bcr-Abl transforming activity. J Biol Chem 2006; 281: 30907–30916.

    Article  CAS  PubMed  Google Scholar 

  18. Dan S, Naito M, Tsuruo T . Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR–ABL tyrosine kinase, CGP 57148. Cell Death Differ 1998; 5: 710–715.

    Article  CAS  PubMed  Google Scholar 

  19. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  20. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  21. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  PubMed  Google Scholar 

  23. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  24. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  PubMed  Google Scholar 

  25. Ricci JE, Maulon L, Luciano F, Guerin S, Livolsi A, Mari B et al. Cleavage and relocation of the tyrosine kinase P59FYN during Fas-mediated apoptosis in T lymphocytes. Oncogene 1999; 18: 3963–3969.

    Article  CAS  PubMed  Google Scholar 

  26. Ricci JE, Lang V, Luciano F, Belhacene N, Giordanengo V, Michel F et al. An absolute requirement for Fyn in T cell receptor-induced caspase activation and apoptosis. FASEB J 2001; 15: 1777–1779.

    Article  CAS  PubMed  Google Scholar 

  27. Luciano F, Ricci JE, Auberger P . Cleavage of Fyn and Lyn in their N-terminal unique regions during induction of apoptosis: a new mechanism for Src kinase regulation. Oncogene 2001; 20: 4935–4941.

    Article  CAS  PubMed  Google Scholar 

  28. Luciano F, Herrant M, Jacquel A, Ricci JE, Auberger P . The p54 cleaved form of the tyrosine kinase Lyn generated by caspases during BCR-induced cell death in B lymphoma acts as a negative regulator of apoptosis. FASEB J 2003; 17: 711–713.

    Article  CAS  PubMed  Google Scholar 

  29. Jacquel A, Colosetti P, Grosso S, Belhacene N, Puissant A, Marchetti S et al. Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene 2007; 26: 2445–2458.

    Article  CAS  PubMed  Google Scholar 

  30. Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 2008; 68: 9809–9816.

    Article  CAS  PubMed  Google Scholar 

  31. Jacquel A, Herrant M, Defamie V, Belhacene N, Colosetti P, Marchetti S et al. A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis. Oncogene 2006; 25: 781–794.

    Article  CAS  PubMed  Google Scholar 

  32. Belhacene N, Maulon L, Guerin S, Ricci JE, Mari B, Colin Y et al. Differential expression of the Kell blood group and CD10 antigens: two related membrane metallopeptidases during differentiation of K562 cells by phorbol ester and hemin. FASEB J 1998; 12: 531–539.

    Article  CAS  PubMed  Google Scholar 

  33. Puissant A, Grosso S, Jacquel A, Belhacene N, Colosetti P, Cassuto JP et al. Imatinib mesylate-resistant human chronic myelogenous leukemia cell lines exhibit high sensitivity to the phytoalexin resveratrol. FASEB J 2008; 22: 1894–1904.

    Article  CAS  PubMed  Google Scholar 

  34. Dai Y, Rahmani M, Corey SJ, Dent P, Grant S . A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279: 34227–34239.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 2005; 106: 3948–3954.

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Meng F, Lu H, Kong L, Bornmann W, Peng Z et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 2008; 111: 3821–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun C, Hu Y, Liu X, Wu T, Wang Y, He W et al. Resveratrol downregulates the constitutional activation of nuclear factor-kappaB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis. Cancer Genet Cytogenet 2006; 165: 9–19.

    Article  CAS  PubMed  Google Scholar 

  38. Bhardwaj A, Sethi G, Vadhan-Raj S, Bueso-Ramos C, Takada Y, Gaur U et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007; 109: 2293–2302.

    Article  CAS  PubMed  Google Scholar 

  39. Shelly C, Petruzzelli L, Herrera R . PMA-induced phenotypic changes in K562 cells: MAPK-dependent and -independent events. Leukemia 1998; 12: 1951–1961.

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst 2008; 100: 926–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G et al. Phosphorylation of Bim-EL by Erk1/2 on Serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 2003; 22: 6785–6793.

    Article  CAS  PubMed  Google Scholar 

  42. Biswas SC, Greene LA . Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem 2002; 277: 49511–49516.

    Article  CAS  PubMed  Google Scholar 

  43. Kuroda J, Puthalakah H, Gragg MS, Kelly PN, Bouillet P, Huang DC et al. Bim and bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103: 14907–14912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Pr E Van-Obberghen (INSERM U907, Nice, France) for reviewing this manuscript. This work was supported by INSERM, l’Institut National du Cancer (INCA grant PL-06-26), and the Fondation de France. SM is a post-doctoral fellow of the Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Auberger.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamas, P., Marchetti, S., Puissant, A. et al. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia 23, 1500–1506 (2009). https://doi.org/10.1038/leu.2009.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.60

Keywords

This article is cited by

Search

Quick links