Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway

Abstract

Bcr-Abl causes chronic myelogenous leukemia, a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells. In this study, inducible expression of Bcr-Abl in TonB.210 cells is associated with increased production of intracellular reactive oxygen species (ROS), which is thought to play a role in survival signaling when generated at specific levels. Elevated ROS in Bcr-Abl-expressing cells were found to activate PI3k/Akt pathway members such as Akt and GSK3β as well as downstream targets β-catenin and Mcl-1. The activation of these proteins was inhibited by the flavoprotein inhibitor diphenyleneiodonium, which is commonly used to inhibit NADPH oxidase (Nox). This indicated that increased ROS might be related to increased activity of one member of the Nox family. Knock-down experiments using siRNA suggest that Nox-4 is the main source of increased ROS following Bcr-Abl expression. We showed that Bcr-Abl-induced ROS could also increase survival pathway signaling through redox inhibition of PP1α, a serine threonine phosphatase that negatively regulates the PI3k/Akt pathway. Overall our results demonstrate that Bcr-Abl expression increases Nox-4-generated ROS, which in turn increases survival signaling through PI3k/Akt pathway by inhibition of PP1α, thus contributing to the high level of resistance to apoptosis seen in these Bcr-Abl-expressing cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  2. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  CAS  PubMed  Google Scholar 

  3. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21: 749–760.

    Article  CAS  PubMed  Google Scholar 

  4. Millward TA, Zolnierowicz S, Hemmings BA . Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 1999; 24: 186–191.

    Article  CAS  PubMed  Google Scholar 

  5. O'Loghlen A, Perez-Morgado MI, Salinas M, Martin ME . Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2 alpha phosphorylation in differentiated PC12 cells. Arch Biochem Biophys 2003; 417: 194–202.

    Article  CAS  PubMed  Google Scholar 

  6. Rao RK, Clayton LW . Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem Biophys Res Commun 2002; 293: 610–616.

    Article  CAS  PubMed  Google Scholar 

  7. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    Article  CAS  PubMed  Google Scholar 

  8. Lambeth JD . NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  9. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 2000; 275: 24273–24278.

    Article  CAS  PubMed  Google Scholar 

  10. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 2005; 105: 1717–1723.

    Article  CAS  PubMed  Google Scholar 

  11. Klucher KM, Lopez DV, Daley GQ . Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 1998; 91: 3927–3934.

    CAS  PubMed  Google Scholar 

  12. Krishna CM, Liebmann JE, Kaufman D, DeGraff W, Hahn SM, McMurry T et al. The catecholic metal sequestering agent 1,2-dihydroxybenzene-3,5-disulfonate confers protection against oxidative cell damage. Arch Biochem Biophys 1992; 294: 98–106.

    Article  CAS  PubMed  Google Scholar 

  13. Casas J, Gorchs G, Sanchez-Baeza F, Teixidor P, Messeguer A . Inhibition of rat liver microsomal lipid peroxidation elicited by simple 2,2-dimethylchromenes and chromans structurally related to precocenes. J Agric Food Chem 1992; 40: 585–590.

    Article  CAS  Google Scholar 

  14. England K, O’Driscoll C, Cotter TG . Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ 2004; 11: 252–260.

    Article  CAS  PubMed  Google Scholar 

  15. Mackey AM, Sanvicens N, Groeger G, Doonan F, Wallace D, Cotter TG . Redox survival signalling in retina-derived 661W cells. Cell Death Differ 2008; 15: 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  16. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 1997; 272: 843–851.

    Article  CAS  PubMed  Google Scholar 

  17. Fleury C, Mignotte B, Vayssiere JL . Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002; 84: 131–141.

    Article  CAS  PubMed  Google Scholar 

  18. Clevers H . Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    CAS  PubMed  Google Scholar 

  19. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  20. Aichberger KJ, Mayerhofer M, Krauth MT, Skvara H, Florian S, Sonneck K et al. Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 2005; 105: 3303–3311.

    Article  CAS  PubMed  Google Scholar 

  21. Ueyama T, Geiszt M, Leto TL . Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 2006; 26: 2160–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Wall NR, Kocher K, Duclos N, Fabbro D, Neuberg D et al. Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 2004; 113: 1784–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Resjo S, Oknianska A, Zolnierowicz S, Manganiello V, Degerman E . Phosphorylation and activation of phosphodiesterase type 3B (PDE3B) in adipocytes in response to serine/threonine phosphatase inhibitors: deactivation of PDE3B in vitro by protein phosphatase type 2A. Biochem J 1999; 341 (Part 3): 839–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stone JR, Yang S . Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 2006; 8: 243–270.

    Article  CAS  PubMed  Google Scholar 

  25. Hickey FB, Cotter TG . BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 2006; 281: 2441–2450.

    Article  CAS  PubMed  Google Scholar 

  26. Ress A, Moelling K . Bcr is a negative regulator of the Wnt signalling pathway. EMBO Rep 2005; 6: 1095–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyano K, Sumimoto H . Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie 2007; 89: 1133–1144.

    Article  CAS  PubMed  Google Scholar 

  28. Miyano K, Ueno N, Takeya R, Sumimoto H . Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 2006; 281: 21857–21868.

    Article  CAS  PubMed  Google Scholar 

  29. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG . Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 2006; 18: 69–82.

    Article  CAS  PubMed  Google Scholar 

  30. Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J et al. Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 2003; 46: 1428–1437.

    Article  CAS  PubMed  Google Scholar 

  31. Eng C . PTEN: one gene, many syndromes. Hum Mutat 2003; 22: 183–198.

    CAS  PubMed  Google Scholar 

  32. LaMontagne Jr KR, Flint AJ, Franza Jr BR, Pandergast AM, Tonks NK . Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 1998; 18: 2965–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tauchi T, Feng GS, Shen R, Song HY, Donner D, Pawson T et al. SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase. J Biol Chem 1994; 269: 15381–15387.

    CAS  PubMed  Google Scholar 

  34. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS . Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem 2005; 280: 38879–38887.

    Article  CAS  PubMed  Google Scholar 

  35. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441: 523–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K et al. Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 2004; 279: 49571–49574.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Children Leukaemia Research Project, Irish Cancer Society and Health Research Board of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T G Cotter.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naughton, R., Quiney, C., Turner, S. et al. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia 23, 1432–1440 (2009). https://doi.org/10.1038/leu.2009.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.49

Keywords

This article is cited by

Search

Quick links