Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteinase 3 (PR3) gene is highly expressed in CBF leukemias and codes for a protein with abnormal nuclear localization that confers drug sensitivity

A Retraction to this article was published on 08 April 2010

Abstract

Core-binding factor (CBF) leukemias are characterized by a high degree of sensitivity to high-dose cytarabine (ARA-C) treatment and by a relatively favorable prognosis compared with most other forms of adult acute myeloid leukemia (AML). The molecular basis of the response to chemotherapy is still being analyzed. The proteinase 3 (PR3) gene codes for a serine protease with a broad spectrum of proteolytic activity. PR3 is involved in the control of proliferation of myeloid leukemia cells, and when it is abnormally expressed, it confers factor-independent growth to hematopoietic cells. In this study, we analyzed the expression levels of PR3 in 113 AML patients. PR3 is highly expressed in AML, mainly in CBF leukemias in which PR3 is not only expressed, but also abnormally localized within the nuclear compartment. Nuclear PR3 results in cleavage of nuclear factor (NF)-κB p65 into an inactive p56 subunit lacking any transcriptional activity. The nuclear localization of PR3 is responsible for increased proliferation, apoptosis arrest and increased sensitivity to high-dose ARA-C. This study provides a new molecular mechanism that is responsible for NF-κB inactivation and increased sensitivity to chemotherapy in CBF leukemias.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Downing JR . The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003; 13: 48–54.

    Article  CAS  Google Scholar 

  2. Licht JD . AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 2002; 20: 5660–5679.

    Article  Google Scholar 

  3. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  CAS  Google Scholar 

  4. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  Google Scholar 

  5. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  6. Mrozek K, Heerema NA, Bloomfield CD . Cytogenetics in acute leukaemia. Blood Rev 2004; 18: 115–136.

    Article  Google Scholar 

  7. Bullinger L, Rücker FG, Kurz S, Du J, Scholl C, Sander S et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110: 1291–1300.

    Article  CAS  Google Scholar 

  8. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  Google Scholar 

  9. Shih LY, Liang DC, Fu JF, Wu JH, Wang PN, Lin TL et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 2006; 20: 218–223.

    Article  CAS  Google Scholar 

  10. Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrózek K et al. High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood 2008; 111: 5371–5379.

    Article  CAS  Google Scholar 

  11. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  Google Scholar 

  12. Radmacher MD, Marcucci G, Ruppert AS, Mrózek K, Whitman SP, Vardiman JW et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 2006; 108: 1677–1683.

    Article  CAS  Google Scholar 

  13. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  Google Scholar 

  14. Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR . Characterization of proteinase-3 (PR3), a neutrophil serine protease. Structural and functional properties. J Biol Chem 1991; 266: 9540–9548.

    CAS  PubMed  Google Scholar 

  15. Gabay JE, Heiple JM, Cohn ZA, Nathan CF . Sucellular location and properties of bactericidal factors from human neutrophils. J Exp Med 1986; 164: 1407–1421.

    Article  CAS  Google Scholar 

  16. Niles JL, McCluskey RT, Ahmad MF, Arnaout MA . Wegener granulomatosis autoantigen is a novel neutrophil serine proteinase. Blood 1989; 74: 1888–1893.

    CAS  PubMed  Google Scholar 

  17. Tervaert JW, van der Woude FJ, Fauci AS, Ambrus JL, Velosa J, Keane WF et al. Association between active Wegener's granulomatosis and anticytoplasmatic antibodies. Arch Intern Med 1989; 149: 2461–2465.

    Article  CAS  Google Scholar 

  18. Lüdemann J, Utecht B, Gross WL . Anti-neutrophil cytoplasm antibodies in Wegener's granulomatosis recognize an elastinolytic enzyme. J Exp Med 1990; 171: 357–362.

    Article  Google Scholar 

  19. Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE . Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukaemia cells. Cell 1989; 59: 959–968.

    Article  CAS  Google Scholar 

  20. Zimmer M, Medcalf RL, Fink TM, Mattmann C, Lichter P, Jenne DE . Three human elastase-like genes coordinately expressed in the myelomocyte lineage are organized as a single genetic locus on 19 pter. Proc Natl Acad Sci USA 1992; 89: 8215–8219.

    Article  CAS  Google Scholar 

  21. Cowland J, Borregard N . The individual regulation of granule protein mRNA levels during neutrophil maturation explain the heterogeneity of neutrophil granules. J Leukoc Biol 1999; 66: 989–995.

    Article  CAS  Google Scholar 

  22. Barrett J, Rezvani K . Neutrophil granule proteins as targets of leukemia-specific immune responses. Curr Opin Hematol 2006; 13: 15–20.

    Article  CAS  Google Scholar 

  23. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  Google Scholar 

  24. Lutz PG, Moog-Lutz C, Coumau-Gatbois E, Kobari L, Di Gioia Y, Cayre YE . Myeloblastin is a granulocyte colony-stimulating factor-responsive gene conferring factor-independent growth to hematopoietic cells. Proc Natl Acad Sci USA 2000; 97: 1601–1606.

    Article  CAS  Google Scholar 

  25. Sturrock A, Franklin KF, Hoidal JR . Human proteinase-3 expression is regulated by PU.1 in conjunction with a cytidine-rich elements. J Biol Chem 1996; 271: 32392–32402.

    Article  CAS  Google Scholar 

  26. Oelgeschläger M, Nuchprayoon I, Lüscher B, Friedman AD . C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol Cell Biol 1996; 16: 4717–4725.

    Article  Google Scholar 

  27. Lutz PG, Houzel-Charavel A, Moog-Lutz C, Cayre YE . Myloblastin is an Myb target gene: mechanism of regulation in myeloid leukaemia cells growth-arrested by retinoic acid. Blood 2001; 97: 2449–2456.

    Article  CAS  Google Scholar 

  28. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukaemia. Blood 1997; 90: 489–519.

    CAS  PubMed  Google Scholar 

  29. Nichols J, Nimer SD . Transcription factors, translocation, and leukaemia. Blood 1992; 80: 2953–2963.

    CAS  PubMed  Google Scholar 

  30. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukaemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  Google Scholar 

  31. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favourable prognostic significance of CEBPA mutations inn patients with de novo acute myeloid leukaemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  Google Scholar 

  32. Cilloni D, Carturan S, Gottardi E, Messa F, Messa E, Fava M et al. Down-modulation of the C/EBPα transcription factor in core binding factor acute myeloid leukaemia. Blood 2003; 102: 2705–2706.

    Article  CAS  Google Scholar 

  33. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  34. Cilloni D, Messa F, Rosso V, Arruga F, Defilippi I, Carturan S et al. Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations. Leukemia 2008; 22: 1234–1240.

    Article  CAS  Google Scholar 

  35. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 2000; 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  36. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  Google Scholar 

  37. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135: 165–173.

    Article  Google Scholar 

  38. Schlenk RF, Benner A, Krauter J, Büchner T, Sauerland C, Ehninger G et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22: 3741–3750.

    Article  CAS  Google Scholar 

  39. Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23: 5705–5717.

    Article  Google Scholar 

  40. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  Google Scholar 

  41. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  Google Scholar 

  42. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S . NF-kB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2003; 18: 1–7.

    Google Scholar 

  43. Garg A, Aggarwal BB . Nuclear transcription factor-kB as a target for cancer drug development. Leukemia 2002; 16: 1053–1068.

    Article  CAS  Google Scholar 

  44. Cilloni D, Messa F, Arruga F, Defilippi I, Morotti A, Messa E et al. The NF-kappaB pathway blockade by the IKK inhibitor PS1145 can overcome imatinib resistance. Leukemia 2007; 20: 61–67.

    Article  Google Scholar 

  45. Preston GA, Zarella CS, Pendergraft III WF, Rudolph EH, Yang JJ, Sekura SB et al. Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-kappaB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. J Am Soc 2002; 13: 2840–2849.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from AIRC (Associazione Italiana per la Ricerca sul Cancro), CNR (Progetto Finalizzato Oncologia), MURST-COFIN, AIL (Associazione Italiana contro le Leucemie) and from Regione Piemonte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Cilloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilloni, D., Carturan, S., Maffè, C. et al. Proteinase 3 (PR3) gene is highly expressed in CBF leukemias and codes for a protein with abnormal nuclear localization that confers drug sensitivity. Leukemia (2010). https://doi.org/10.1038/leu.2009.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/leu.2009.207

Keywords

Search

Quick links