Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia

Abstract

As chronic lymphocytic leukemia (CLL) is characterized by overexpression of pro-survival BCL2, compounds that mimic its physiological antagonists, the BH3-only proteins, may have a role in treatment of this disease. ABT-737 is a BH3 mimetic compound that selectively targets BCL2 and BCLXL. In the present work, we report that ABT-737 is highly effective (LC50<50 nM) as a single agent against most (21/30) primary CLL samples, but that a sizable minority is relatively insensitive. In vitro sensitivity to ABT-737 could not be simply predicted by the patients' clinical features, including response to prior therapy or known prognostic markers (CD38 expression, 17p deletion), or the relative expression of BCL2 family proteins (BCL2, MCL1, BAX, BIM). Strikingly, co-incubation with cytotoxic agents (dexamethasone, etoposide, fludarabine, doxorubicin) sensitized most CLL samples to ABT-737, but this could not be predicted by responses to either ABT-737 or the cytotoxic agent alone. Of 17 samples least sensitive to ABT-737, 13 were sensitized by co-treatment with at least one cytotoxic agent. These data indicate that combination of ABT-737 with a second anti-leukemic agent would improve response rates and suggest a potential role for combination therapies that include BH3 mimetics for the treatment of this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Chiorazzi N, Ferrarini M . B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003; 21: 841–894.

    Article  CAS  Google Scholar 

  3. Schena M, Larsson LG, Gottardi D, Gaidano G, Carlsson M, Nilsson K et al. Growth- and differentiation-associated expression of bcl-2 in B-chronic lymphocytic leukemia cells. Blood 1992; 79: 2981–2989.

    CAS  PubMed  Google Scholar 

  4. Yee KW, O'Brien SM . Chronic lymphocytic leukemia: diagnosis and treatment. Mayo Clin Proc 2006; 81: 1105–1129.

    Article  CAS  Google Scholar 

  5. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  6. Han T, Ozer H, Sadamori N, Emrich L, Gomez GA, Henderson ES et al. Prognostic importance of cytogenetic abnormalities in patients with chronic lymphocytic leukemia. N Engl J Med 1984; 310: 288–292.

    Article  CAS  Google Scholar 

  7. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  Google Scholar 

  8. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  Google Scholar 

  9. Jelinek DF, Tschumper RC, Geyer SM, Bone ND, Dewald GW, Hanson CA et al. Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. Br J Haematol 2001; 115: 854–861.

    Article  CAS  Google Scholar 

  10. Adams JM . Ways of dying: multiple pathways to apoptosis. Genes Dev 2003; 17: 2481–2495.

    Article  CAS  Google Scholar 

  11. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  Google Scholar 

  12. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM . Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  CAS  Google Scholar 

  13. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906.

    Article  CAS  Google Scholar 

  14. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. miR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci 2008; 105: 5166–5171.

    Article  CAS  Google Scholar 

  15. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  16. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356: 1728–1733.

    Article  CAS  Google Scholar 

  17. O'Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki A, Koziner B et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2007; 25: 1114–1120.

    Article  CAS  Google Scholar 

  18. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci 2000; 97: 7124–7129.

    Article  CAS  Google Scholar 

  19. Chen J, Freeman A, Liu J, Dai Q, Lee RM . The apoptotic effect of HA14-1, a Bcl-2-interacting small molecular compound, requires Bax translocation and is enhanced by PK11195. Mol Cancer Ther 2002; 1: 961–967.

    PubMed  Google Scholar 

  20. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci 2007; 104: 19512–19517.

    Article  CAS  Google Scholar 

  21. Becattini B, Kitada S, Leone M, Monosov E, Chandler S, Zhai D et al. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 2004; 11: 389–395.

    Article  CAS  Google Scholar 

  22. Zhai D, Jin C, Satterthwait AC, Reed JC . Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ 2006; 8: 1419–1421.

    Article  Google Scholar 

  23. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  Google Scholar 

  24. Huang DCS, Strasser A . BH3-only proteins—essential initiators of apoptotic cell death. Cell 2000; 103: 839–842.

    Article  CAS  Google Scholar 

  25. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  Google Scholar 

  26. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    Article  CAS  Google Scholar 

  27. Vogler M, Dinsdale D, Sun XM, Young KW, Butterworth M, Nicotera P et al. A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ 2008; 15: 820–830.

    Article  CAS  Google Scholar 

  28. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  Google Scholar 

  29. Tahir SK, Yang X, Anderson MG, Morgan-Lappe SE, Sarthy AV, Chen J et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res 2007; 67: 1176–1183.

    Article  CAS  Google Scholar 

  30. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. Differential targeting of pro-survival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17: 393–403.

    Article  CAS  Google Scholar 

  31. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  Google Scholar 

  32. Bosanquet AG, Sturm I, Wieder T, Essmann F, Bosanquet MI, Head DJ et al. Bax expression correlates with cellular drug sensitivity to doxorubicin, cyclophosphamide and chlorambucil but not fludarabine, cladribine or corticosteroids in B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 1035–1044.

    Article  CAS  Google Scholar 

  33. Lowis SP, Newell DR, Pearson AD . Exposure and schedule dependency of etoposide in neuroblastoma and leukaemia cells in vitro. Eur J Cancer 1995; 31A: 622–626.

    Article  CAS  Google Scholar 

  34. Gandhi V, Plunkett W . Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002; 41: 93–103.

    Article  CAS  Google Scholar 

  35. Bliss CI . The toxicity of poisons applied jointly. Ann Appl Biol 1939; 26: 585–615.

    Article  CAS  Google Scholar 

  36. Wilson-Annan J, O'Reilly LA, Crawford SA, Hausmann G, Beaumont JG, Parma LP et al. Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity. J Cell Biol 2003; 162: 877–888.

    Article  CAS  Google Scholar 

  37. Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DCS, Day CL . The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 2003; 22: 1497–1507.

    Article  CAS  Google Scholar 

  38. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DCS et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci 2007; 104: 6217–6222.

    Article  CAS  Google Scholar 

  39. Suzuki M, Youle RJ, Tjandra N . Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000; 103: 645–654.

    Article  CAS  Google Scholar 

  40. Gill SC, von Hippel PH . Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 1989; 189: 319–326.

    Article  Google Scholar 

  41. Pezzella F, Gatter KC, Mason DY, Bastard C, Duval C, Krajewski A et al. Bcl-2 protein expression in follicular lymphomas in absence of 14;18 translocation. Lancet 1990; 336: 1510–1511.

    Article  CAS  Google Scholar 

  42. O'Reilly LA, Print C, Hausmann G, Moriishi K, Cory S, Huang DCS et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ 2001; 8: 486–494.

    Article  CAS  Google Scholar 

  43. Shaw GR, Kronberger DL . TP53 deletions but not trisomy 12 are adverse in B-cell lymphoproliferative disorders. Cancer Genet Cytogenet 2000; 119: 146–154.

    Article  CAS  Google Scholar 

  44. Durig J, Naschar M, Schmucker U, Renzing-Kohler K, Holter T, Huttmann A et al. CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 2002; 16: 30–35.

    Article  CAS  Google Scholar 

  45. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood 2008; 112: 2906–2916.

    Article  CAS  Google Scholar 

  46. Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007; 26: 2374–2380.

    Article  CAS  Google Scholar 

  47. Levesque MC, O'Loughlin CW, Weinberg JB . Use of serum-free media to minimize apoptosis of chronic lymphocytic leukemia cells during in vitro culture. Leukemia 2001; 15: 1305–1307.

    Article  CAS  Google Scholar 

  48. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  Google Scholar 

  49. Balakrishnan K, Burger JA, Wierda WG, Gandhi V . AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 2009; 113: 149–153.

    Article  CAS  Google Scholar 

  50. Del Gaizo Moore V, Schlis KD, Sallan SE, Armstrong SA, Letai A . BCL-2 dependence and ABT-737 sensitivity in acute lymphoblastic leukemia. Blood 2008; 111: 2300–2309.

    Article  CAS  Google Scholar 

  51. Letai AG . Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 2008; 8: 121–132.

    Article  CAS  Google Scholar 

  52. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A . BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 2007; 12: 171–185.

    Article  CAS  Google Scholar 

  53. Vogler M, Butterworth M, Majid A, Walewska R, Sun X, Dyer M et al. Concurrent upregulation of BCL-XL and BCL2A1 induces 1000 fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 2009; 113: 1710–1722.

    Article  Google Scholar 

  54. Kuroda J, Kimura S, Andreeff M, Ashihara E, Kamitsuji Y, Yokota A et al. ABT-737 is a useful component of combinatory chemotherapies for chronic myelogenous leukaemias with diverse drug resistance mechanisms. Br J Haematol 2008; 140: 181–190.

    CAS  PubMed  Google Scholar 

  55. Mason KD, Vandenberg CJ, Scott CL, Wei AH, Cory S, Huang DCS et al. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proc Natl Acad Sci 2008; 105: 17961–17966.

    Article  CAS  Google Scholar 

  56. Roberts AW, Brown J, Seymour JF, Wierda WG, Kipps JK, Xiong H et al. An ongoing phase 1 study of ABT-263; pharmacokinetics, safety and anti-tumour activity in patients with relapsed or refractory chronic lymphocytic leukemia (CCL). Blood 2008; 112: abstract 3177.

    Google Scholar 

  57. Wilson WH, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Dunleavy K et al. A phase 1 study evaluating the safety, pharmacokinetics, and efficacy of ABT-263 in subjects with refractory or relapsed lymphoid malignancies. J Clin Oncol 2008; 26 (Suppl): abstract 8511.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Naomi Sprigg (Royal Melbourne Hospital) for her assistance with clinical samples, and to Drs Steve Elmore, Saul Rosenberg and colleagues (Abbott Laboratories) for provision of ABT-737 and scientific discussions. This work was supported by Fellowships and Grants from the Australian NHMRC (Fellowships to WDF, DCSH, AWR; Program Grants 461221, 461219), Leukemia and Lymphoma Society (SCOR 7015-02), Australian Cancer Research Foundation (Centre for Therapeutic Target Drug Discovery), Cancer Council of Victoria (Fellowships to KDM, EFL; Grant-in-aid 461239), the Victorian Cancer Agency (Fellowship to KDM); SLK is supported by a HOTT Fellowship (Roche, HSANZ, COSA) and a Royal Melbourne Hospital Haematology and Bone Marrow Transplant Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D C S Huang or A W Roberts.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, K., Khaw, S., Rayeroux, K. et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 23, 2034–2041 (2009). https://doi.org/10.1038/leu.2009.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.151

Keywords

This article is cited by

Search

Quick links