Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia

Abstract

The two B-cell non-Hodgkin's lymphoma entities, chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), show recurrent chromosomal gains of 3q25–q29, 12q13–q14 and 18q21–q22. The pathomechanisms affected by these aberrations are not understood. The aim of this study was to identify genes, located within these gained regions, which control cell death and cell survival of MCL and CLL cancer cells. Blood samples collected from 18 patients with CLL and 6 patients with MCL, as well as 6 cell lines representing both malignancies were analyzed by gene expression profiling. By a comparison of genomic DNA and gene expression, 72 candidate genes were identified. We performed a limited RNA interference screening with these candidates to identify genes affecting cell survival. CCDC50 (coiled coil domain containing protein 50), SERPINI2 and SMARCC2 mediated a reduction of cell viability in primary CLL cells as well as in cell lines. Gene knockdown and a nuclear factor kappa B (NFκB) reporter gene assay revealed that CCDC50 is required for survival in MCL and CLL cells and controls NFκB signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Campo E, Raffeld M, Jaffe ES . Mantle-cell lymphoma. Semin Hematol 1999; 36: 115–127. unbedingt noch neuere Referenzen dazu.

    CAS  PubMed  Google Scholar 

  2. Erikson J, Finan J, Tsujimoto Y, Nowell PC, Croce CM . The chromosome 14 breakpoint in neoplastic B cells with the t(11;14) translocation involves the immunoglobulin heavy chain locus. Proc Natl Acad Sci USA 1984; 81: 4144–4148.

    Article  CAS  Google Scholar 

  3. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM . Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–1099.

    Article  CAS  Google Scholar 

  4. Bentz M, Plesch A, Bullinger L, Stilgenbauer S, Ott G, Muller-Hermelink HK et al. t(11;14)-positive mantle cell lymphomas exhibit complex karyotypes and share similarities with B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 2000; 27: 285–294.

    Article  CAS  Google Scholar 

  5. Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P . Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000; 97: 2773–2778.

    Article  CAS  Google Scholar 

  6. Solinas-Toldo S, Durst M, Lichter P . Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality. Proc Natl Acad Sci USA 1997; 94: 3854–3859.

    Article  CAS  Google Scholar 

  7. Monni O, Oinonen R, Elonen E, Franssila K, Teerenhovi L, Joensuu H et al. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer 1998; 21: 298–307.

    Article  CAS  Google Scholar 

  8. de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ et al. Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet 2004; 13: 1827–1837.

    Article  CAS  Google Scholar 

  9. Kohlhammer H, Schwaenen C, Wessendorf S, Holzmann K, Kestler HA, Kienle D et al. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 2004; 1: 104 (3): 795-801.

    Google Scholar 

  10. Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24: 1348–1358.

    Article  CAS  Google Scholar 

  11. Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martin-Subero JI, Nielander I et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 2005; 105: 4445–4454.

    Article  CAS  Google Scholar 

  12. Schraders M, Pfundt R, Straatman HM, Janssen IM, van Kessel AG, Schoenmakers EF et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood 2005; 105: 1686–1693.

    Article  CAS  Google Scholar 

  13. Schraders M, Jares P, Bea S, Schoenmakers EF, van Krieken JH, Campo E et al. Integrated genomic and expression profiling in mantle cell lymphoma: identification of gene-dosage regulated candidate genes. Br J Haematol 2008; 143: 210–221.

    Article  CAS  Google Scholar 

  14. Sander S, Bullinger L, Leupolt E, Benner A, Kienle D, Katzenberger T et al. Genomic aberrations in mantle cell lymphoma detected by interphase fluorescence in situ hybridization. Incidence and clinicopathological correlations. Haematologica 2008; 93: 680–687.

    Article  CAS  Google Scholar 

  15. Hofmann WK, de Vos S, Tsukasaki K, Wachsman W, Pinkus GS, Said JW et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood 2001; 98: 787–794.

    Article  CAS  Google Scholar 

  16. Zhu Y, Hollmen J, Raty R, Aalto Y, Nagy B, Elonen E et al. Investigatory and analytical approaches to differential gene expression profiling in mantle cell lymphoma. Br J Haematol 2002; 119: 905–915.

    Article  CAS  Google Scholar 

  17. Martinez N, Camacho FI, Algara P, Rodriguez A, Dopazo A, Ruiz-Ballesteros E et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003; 63: 8226–8232.

    CAS  PubMed  Google Scholar 

  18. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  Google Scholar 

  19. de Vos S, Krug U, Hofmann WK, Pinkus GS, Swerdlow SH, Wachsman W et al. Cell cycle alterations in the blastoid variant of mantle cell lymphoma (MCL-BV) as detected by gene expression profiling of mantle cell lymphoma (MCL) and MCL-BV. Diagn Mol Pathol 2003; 12: 35–43.

    Article  CAS  Google Scholar 

  20. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 2007; 109: 271–280.

    Article  CAS  Google Scholar 

  21. Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signaling pathways. Br J Haematol 2005; 130: 516–526.

    Article  CAS  Google Scholar 

  22. Salaverria I, Zettl A, Bea S, Moreno V, Valls J, Hartmann E et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 2007; 25: 1216–1222.

    Article  CAS  Google Scholar 

  23. Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004; 22: 3937–3949.

    Article  CAS  Google Scholar 

  24. Zenz T, Mertens D, Dohner H, Stilgenbauer S . Molecular diagnostics in chronic lymphocytic leukemia—pathogenetic and clinical implications. Leuk Lymphoma 2008; 49: 864–873.

    Article  CAS  Google Scholar 

  25. Jares P, Campo E . Advances in the understanding of mantle cell lymphoma. Br J Haematol 2008; 142: 149–165.

    Article  CAS  Google Scholar 

  26. Bea S, Ribas M, Hernandez JM, Bosch F, Pinyol M, Hernandez L et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 1999; 93: 4365–4374.

    CAS  PubMed  Google Scholar 

  27. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  Google Scholar 

  28. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  29. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  Google Scholar 

  30. Dighiero G, Travade P, Chevret S, Fenaux P, Chastang C, Binet JL . B-cell chronic lymphocytic leukemia: present status and future directions. French Cooperative Group on CLL. Blood 1991; 78: 1901–1914.

    CAS  Google Scholar 

  31. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  32. Seiffert M, Stilgenbauer S, Dohner H, Lichter P . Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia 2007; 21: 1977–1983.

    Article  CAS  Google Scholar 

  33. van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003; 4: 609–615.

    Article  CAS  Google Scholar 

  34. Pscherer A, Schliwka J, Wildenberger K, Mincheva A, Schwaenen C, Dohner H et al. Antagonizing inactivated tumor suppressor genes and activated oncogenes by a versatile transgenesis system: application in mantle cell lymphoma. FASEB J 2006; 20: 1188–1190.

    Article  CAS  Google Scholar 

  35. Korz C, Pscherer A, Benner A, Mertens D, Schaffner C, Leupolt E et al. Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood 2002; 99: 4554–4561.

    Article  CAS  Google Scholar 

  36. Kameda H, Watanabe M, Bohgaki M, Tsukiyama T, Hatakeyama S . Inhibition of NF-kappaB signaling via tyrosine phosphorylation of Ymer. Biochem Biophys Res Commun 2009; 378: 744–749.

    Article  CAS  Google Scholar 

  37. Bohgaki M, Tsukiyama T, Nakajima A, Maruyama S, Watanabe M, Koike T et al. Involvement of Ymer in suppression of NF-kappaB activation by regulated interaction with lysine-63-linked polyubiquitin chain. Biochim Biophys Acta 2008; 1783: 826–837.

    Article  CAS  Google Scholar 

  38. Schmechel SC, LeVasseur RJ, Yang KH, Koehler KM, Kussick SJ, Sabath DE . Identification of genes whose expression patterns differ in benign lymphoid tissue and follicular, mantle cell, and small lymphocytic lymphoma. Leukemia 2004; 18: 841–855.

    Article  CAS  Google Scholar 

  39. Bertoni F, Rinaldi A, Zucca E, Cavalli F . Update on the molecular biology of mantle cell lymphoma. Hematol Oncol 2006; 24: 22–27.

    Article  CAS  Google Scholar 

  40. Greiner TC, Dasgupta C, Ho VV, Weisenburger DD, Smith LM, Lynch JC et al. Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci USA 2006; 103: 2352–2357.

    Article  CAS  Google Scholar 

  41. Falt S, Merup M, Gahrton G, Lambert B, Wennborg A . Identification of progression markers in B-CLL by gene expression profiling. Exp Hematol 2005; 33: 883–893.

    Article  Google Scholar 

  42. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  Google Scholar 

  43. Snove Jr O, Nedland M, Fjeldstad SH, Humberset H, Birkeland OR, Grunfeld T et al. Designing effective siRNAs with off-target control. Biochem Biophys Res Commun 2004; 325: 769–773.

    Article  CAS  Google Scholar 

  44. Tschuch C, Schulz A, Pscherer A, Werft W, Benner A, Hotz-Wagenblatt A et al. Off-target effects of siRNA specific for GFP. BMC Mol Biol 2008; 9: 60.

    Article  Google Scholar 

  45. Tashiro K, Konishi H, Sano E, Nabeshi H, Yamauchi E, Taniguchi H . Suppression of the ligand-mediated down-regulation of epidermal growth factor receptor by Ymer, a novel tyrosine-phosphorylated and ubiquitinated protein. J Biol Chem 2006; 281: 24612–24622.

    Article  CAS  Google Scholar 

  46. Beyaert R, Heyninck K, Van Huffel S . A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60: 1143–1151.

    Article  CAS  Google Scholar 

  47. Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C . A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271: 18068–18073.

    Article  CAS  Google Scholar 

  48. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ . Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003; 171: 88–95.

    Article  CAS  Google Scholar 

  49. Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M . A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet 2002; 30: 315–320.

    Article  Google Scholar 

  50. Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994; 266: 1376–1380.

    Article  CAS  Google Scholar 

  51. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303: 1010–1014.

    Article  CAS  Google Scholar 

  52. Kerley-Hamilton JS, Pike AM, Li N, DiRenzo J, Spinella MJ . A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embryonal carcinoma. Oncogene 2005; 24: 6090–6100.

    Article  CAS  Google Scholar 

  53. Adamsen BL, Kravik KL, Clausen OP, De Angelis PM . Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol 2007; 31: 1491–1500.

    CAS  PubMed  Google Scholar 

  54. Phang JM, Donald SP, Pandhare J, Liu Y . The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 2008; 35: 681–690.

    Article  CAS  Google Scholar 

  55. Pulverer B, Sommer A, McArthur GA, Eisenman RN, Luscher B . Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. J Cell Physiol 2000; 183: 399–410.

    Article  CAS  Google Scholar 

  56. Whibley C, Pharoah PD, Hollstein M . p53 polymorphisms: cancer implications. Nat Rev Cancer 2009; 9: 95–107.

    Article  CAS  Google Scholar 

  57. Zenz T, Mohr J, Edelmann J, Sarno A, Hoth P, Heuberger M et al. Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway. Leuk Lymphoma 2009; 50: 510–513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Michael Rogers for helpful discussions and a critical review of this paper, Professor Reiner Siebert and Dr Inga Vater from the University of Kiel for kindly providing additional MCL patient material, Verena Gschwend and Angela Schulz for brilliant laboratory support and Dr Ludger Altrogge (Lonza, Cologne, Germany) for the excellent collaboration and technical support. This study is supported by the German José-Carreras leukemia foundation (DJCLS R 06/13v) (DJCLS R 08/22v) and the Fritz Thyssen foundation (10.04.1.169). MB is funded by the Helmholtz Alliance for Systems Biology. AR and EH are supported by the Interdisciplinary Center for Clinical Research (IZKF), University of Würzburg, Germany. GO is supported by the Robert-Bosch-Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Lichter.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farfsing, A., Engel, F., Seiffert, M. et al. Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia. Leukemia 23, 2018–2026 (2009). https://doi.org/10.1038/leu.2009.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.144

Keywords

This article is cited by

Search

Quick links