Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitivity and Resistance to Therapy

Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-κB in AML carrying NPM1 mutations

A Retraction to this article was published on 08 April 2010

Abstract

Mutations in nucleophosmin (NPM) exon 12 and the resulting delocalization of NPM into the cytoplasm are the most specific and frequent cellular events in acute myeloid leukemia patients (AML) with normal karyotype. Cytoplasmatic NPM (NPMc+) is associated with responsiveness to chemotherapy and better prognosis. The activation of nuclear factor-κB (NF-κB) has been demonstrated to occur in a subset of AML patients and is thought to induce resistance to many chemotherapeutical agents. In this study, we demonstrate the increased in vitro sensitivity of NPMc+ cells to chemotherapeutical agents and their reduced NF-κB activity. Furthermore, we provide evidence of the interaction between NPMc+ and NF-κB in the cytoplasm, resulting in the sequestration and inactivation of NF-κB. The cytosolic localization and consequent inactivation of NF-κB justifies the reduced NF-κB DNA-binding activity observed in NPMc+ patients. These data, taken together, may provide a possible explanation for the increased rate of chemosensitivity observed among the NPMc+ patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. den Besten W, Kuo ML, Williams RT, Sherr CJ . Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 2005; 4: 1593–1598.

    Article  CAS  Google Scholar 

  2. Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R, Sportoletti P et al. The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 2007; 22: 7391–7400.

    Article  Google Scholar 

  3. Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 15; 66: 3044–3050.

    Article  Google Scholar 

  4. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 8874–8886.

    Article  CAS  Google Scholar 

  5. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  Google Scholar 

  6. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996; 87: 882–886.

    CAS  Google Scholar 

  7. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukaemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  Google Scholar 

  8. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  Google Scholar 

  9. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  Google Scholar 

  10. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    Article  CAS  Google Scholar 

  11. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  Google Scholar 

  12. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005; 106: 2854–2861.

    Article  CAS  Google Scholar 

  13. Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 2007; 110: 979–985.

    Article  CAS  Google Scholar 

  14. Ghosh S, Karin M . Missing pieces in the NF-kB puzzle. Cell 2002; 109: 81–96.

    Article  Google Scholar 

  15. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S . NF-kB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2003; 18: 1–7.

    Google Scholar 

  16. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  Google Scholar 

  17. Garg A, Aggarwal BB . Nuclear transcription factor-kB as a target for cancer drug development. Leukemia 2002; 16: 1053–1068.

    Article  CAS  Google Scholar 

  18. Senftleben U, Karin M . The IKK/NF-kB pathway. Crit Care Med 2002; 30: 18–26.

    Article  Google Scholar 

  19. Dhar SK, Lynn BC, Daosukho C, St Clair DK . Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem 2004; 279: 28209–28219.

    Article  CAS  Google Scholar 

  20. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  Google Scholar 

  21. Quentmeier H, Martelli MP, Dirks WG, Bolli N, Liso A, Macleod RA et al. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia 2005; 19: 1760–1767.

    Article  CAS  Google Scholar 

  22. Cilloni D, Messa F, Arruga F, Defilippi I, Morotti A, Messa E et al. The NF-kappaB pathway blockade by the IKK inhibitor PS1145 can overcome Imatinib resistance. Leukemia 2007; 20: 61–67.

    Article  Google Scholar 

  23. Falini B, Nicoletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007; 109: 874–885.

    Article  CAS  Google Scholar 

  24. Aggarwall BB . Nuclear factor-kappaB: the enemy within cancer. Cancer Cell 2004; 6: 203–208.

    Article  Google Scholar 

  25. Takebayashi T, Higashi H, Sudo H, Ozawa H, Suzuki E, Shirado O et al. NF-kappaB-dependent induction of cyclin D1 by retinoblastoma protein (pRB) family proteins and tumor derived pRB mutants. J Biol Chem 2003; 278: 14897–14905.

    Article  CAS  Google Scholar 

  26. Karin M, Cao Y, Greten FR, Li ZW . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    Article  CAS  Google Scholar 

  27. Karin M, Yamamoto Y, Wang QM . The IKK NF-κB system: a treasure trove for drug development. Nat Rev 2004; 3: 17–26.

    CAS  Google Scholar 

  28. Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P et al. Targeting NF-kappaB activation via pharmacologic inhibition of IKK2 induced apoptosis of human acute myeloid leukaemia cells. Blood 2005; 105: 804–811.

    Article  CAS  Google Scholar 

  29. Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G . Nuclear factor kappakappaB as a target for new drug development in myeloid malignancies. Haematologica 2007; 92: 1224–1229.

    Article  CAS  Google Scholar 

  30. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al. Proteasome inhibitors: a novel class of potent and effective anti-tumor agents. Cancer Res 1999; 59: 2615–2622.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from AIRC (Associazione Italiana per la Ricerca sul Cancro), MURST-COFIN, AIL (Associazione Italiana contro le Leucemie) and Regione Piemonte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Cilloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilloni, D., Messa, F., Rosso, V. et al. Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-κB in AML carrying NPM1 mutations. Leukemia 22, 1234–1240 (2008). https://doi.org/10.1038/leu.2008.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.68

Keywords

This article is cited by

Search

Quick links