Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors

Abstract

Occurrence of phenotypic abnormalities in CD34+ hematopoietic progenitor and precursor cells (HPC) and their major B-cell and nonlymphoid compartments has been frequently reported in myelodysplastic syndromes (MDS). Here, we analyze for the first time the numerical and phenotypic abnormalities of different maturation-associated subsets of bone marrow (BM) CD34+ HPC from 50 newly diagnosed MDS patients in comparison to normal/reactive BM (n=29). Our results confirm the existence of heterogeneously altered phenotypes among CD34+ HPC from MDS and indicate that such variability depends both on the relative distribution of the different subsets of CD34+ HPC committed into the different myeloid and B-lymphoid compartments, and their immunophenotype (for example, higher reactivity for CD117 and CD13 and lower expression of CyMPO, CD64 and CD65 on CD34+ immature and neutrophil precursors), a clear association existing between the accumulation of CD34+ HPC and that of immature CD34+ HPC. Interestingly, expansion of erythroid- and neutrophil-lineage CD34+ cells is detected in low-grade MDS at the expense of CD34+ plasmacytoid dendritic cell and B-cell precursors, while expansion of immature CD34+ precursors occurs in high-grade MDS. On the basis of the number and severity of the phenotypic abnormalities detected, a scoring system is proposed that efficiently discriminates between normal/reactive and MDS CD34+ HPC, the mean score significantly increasing from low- to high-grade MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mufti GJ . Pathobiology, classification, and diagnosis of myelodysplastic syndrome. Best Pract Res Clin Haematol 2004; 17: 543–557.

    Article  PubMed  Google Scholar 

  2. Ribeiro E, Lima CS, Metze K, Lorand-Metze I . Flow cytometric analysis of the expression of Fas/Fasl in bone marrow CD34+ cells in myelodysplastic syndromes: relation to disease progression. Leuk Lymphoma 2004; 45: 309–313.

    Article  CAS  PubMed  Google Scholar 

  3. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A . The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000; 96: 3932–3938.

    CAS  PubMed  Google Scholar 

  4. Kussick SJ, Fromm JR, Rossini A, Li Y, Chang A, Norwood TH et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol 2005; 124: 170–181.

    Article  PubMed  Google Scholar 

  5. Liesveld JL, Jordan CT, Phillips GL . The hematopoietic stem cell in myelodysplasia. Stem Cells 2004; 22: 590–599.

    Article  PubMed  Google Scholar 

  6. Fey M . Normal and malignant hematopoiesis. Ann Oncol 2007; 18 (Suppl 1): i9–i13.

    Article  PubMed  Google Scholar 

  7. Fuchigami K, Mori H, Matsuo T, Iwanaga M, Nagai K, Kuriyama K et al. Absolute number of circulating CD34+ cells is abnormally low in refractory anemias and extremely high in RAEB and RAEB-t; novel pathologic features of myelodysplastic syndromes identified by highly sensitive flow cytometry. Leuk Res 2000; 24: 163–174.

    Article  CAS  PubMed  Google Scholar 

  8. Ogata K, Kishikawa Y, Satoh C, Tamura H, Dan K, Hayashi A . Diagnostic application of flow cytometric characteristics of CD34+ cells in low-grade myelodysplastic syndromes. Blood 2006; 108: 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  9. Ogata K, Nakamura K, Yokose N, Tamura H, Tachibana M, Taniguchi O et al. Clinical significance of phenotypic features of blasts in patients with myelodysplastic syndrome. Blood 2002; 100: 3887–3896.

    Article  CAS  PubMed  Google Scholar 

  10. Orfao A, Ortuno F, de Santiago M, Lopez A, San Miguel J . Immunophenotyping of acute leukemias and myelodysplastic syndromes. Cytometry A 2004; 58: 62–71.

    Article  PubMed  Google Scholar 

  11. del Canizo MC, Fernandez ME, Lopez A, Vidriales B, Villaron E, Arroyo JL et al. Immunophenotypic analysis of myelodysplastic syndromes. Haematologica 2003; 88: 402–407.

    PubMed  Google Scholar 

  12. Pirruccello SJ, Young KH, Aoun P . Myeloblast phenotypic changes in myelodysplasia. CD34 and CD117 expression abnormalities are common. Am J Clin Pathol 2006; 125: 884–894.

    Article  PubMed  Google Scholar 

  13. Arroyo JL, Fernandez ME, Hernandez JM, Orfao A, San Miguel JF, del Canizo MC . Impact of immunophenotype on prognosis of patients with myelodysplastic syndromes. Its value in patients without karyotypic abnormalities. Hematol J 2004; 5: 227–233.

    Article  CAS  PubMed  Google Scholar 

  14. Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood 2003; 102: 394–403.

    Article  CAS  PubMed  Google Scholar 

  15. Monreal MB, Pardo ML, Pavlovsky MA, Fernandez I, Corrado CS, Giere I et al. Increased immature hematopoietic progenitor cells CD34+/CD38dim in myelodysplasia. Cytometry B Clin Cytom 2006; 70: 63–70.

    Article  PubMed  Google Scholar 

  16. Maynadie M, Picard F, Husson B, Chatelain B, Cornet Y, Le Roux G et al. Immunophenotypic clustering of myelodysplastic syndromes. Blood 2002; 100: 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  17. Jaffe ES, Harris NL, Stein H, Vardiman JW . Pathology and Genetics of Tumours of the Hematopoietic and Lymphoid Tissues. Lyon, France: IARC Press, 2001, 20. World Health Organization Classification of Tumours.

    Google Scholar 

  18. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  19. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  20. Almeida J, Bueno C, Alguero MC, Sanchez ML, Canizo MC, Fernandez ME et al. Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage-cells. Clin Exp Immunol 1999; 118: 392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kappelmayer J, Gratama JW, Karaszi E, Menendez P, Ciudad J, Rivas R et al. Flow cytometric detection of intracellular myeloperoxidase, CD3 and CD79a. Interaction between monoclonal antibody clones, fluorochromes and sample preparation protocols. J Immunol Methods 2000; 242: 53–65.

    Article  CAS  PubMed  Google Scholar 

  22. Hernandez-Campo PM, Almeida J, Matarraz S, de Santiago M, Sanchez ML, Orfao A . Quantitative analysis of the expression of glycosylphosphatidylinositol-anchored proteins during the maturation of different hematopoietic cell compartments of normal bone marrow. Cytometry B Clin Cytom 2007; 72: 34–42.

    Article  PubMed  Google Scholar 

  23. Primo D, Sanchez ML, Espinosa AB, Tabernero MD, Rasillo A, Sayagues JM et al. Lineage involvement in chronic myeloid leukaemia: comparison between MBCR/ABL and mBCR/ABL cases. Br J Haematol 2006; 132: 736–739.

    Article  CAS  PubMed  Google Scholar 

  24. Martín-Martín L, Almeida J, Orfao A . Phenotypic characterization of plasmacytoid dendritic cells lineage maturation pathway in normal adult bone marrow: a frame of reference for understanding dendritic cell malignancies. Haematologica 2006; 91: 159–160. Abstract Book.

    Google Scholar 

  25. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I . The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5: 213–226.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz A, Fernandez RE, Vogt R, Gratama JW . Standardizing flow cytometry: construction of a standardized fluorescence calibration plot using matching spectral calibrators. Cytometry 1996; 26: 22–31.

    Article  CAS  PubMed  Google Scholar 

  27. Alimena G, Billstrom R, Casalone R, Gallo E, Mitelman F, Pasquali F . Cytogenetic pattern in leukemic cells of patients with constitutional chromosome anomalies. Cancer Genet Cytogenet 1985; 16: 207–218.

    Article  CAS  PubMed  Google Scholar 

  28. Mitelman F . Neoplasia. In: ISCN An International System for Human Cytogenetic Nomenclature. Basel: S. Karger, 1995, p 78.

    Google Scholar 

  29. Ketterling RP, Wyatt WA, VanWier SA, Law M, Hodnefield JM, Hanson CA et al. Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and M-FISH. Leuk Res 2002; 26: 235–240.

    Article  CAS  PubMed  Google Scholar 

  30. Tibshirani R, Hastie T, Narasimhan B, Chu G . Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002; 99: 6567–6572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benesch M, Deeg HJ, Wells D, Loken M . Flow cytometry for diagnosis and assessment of prognosis in patients with myelodysplastic syndromes. Hematology 2004; 9: 171–177.

    Article  PubMed  Google Scholar 

  32. Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 2001; 98: 979–987.

    Article  CAS  PubMed  Google Scholar 

  33. Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res 2007; 31: 727–736.

    Article  PubMed  Google Scholar 

  34. Bene MC, Feuillard J, Bernard H MM . Immunophenotyping of myelodysplasia. Clin Appl Immunol Rev 2005; 5: 133–148.

    Article  CAS  Google Scholar 

  35. Ribeiro E, Matarraz S, de Santiago M, Lima CS, Metze K, Giralt M et al. Maturation-associated immunophenotypic abnormalities in bone marrow B-lymphocytes in myelodysplastic syndromes. Leuk Res 2006; 30: 9–16.

    Article  CAS  PubMed  Google Scholar 

  36. Lorand-Metze I, Ribeiro E, Lima CS, Saad ST, Metze K . Bone marrow B and T lymphocytes present selective changes in myelodysplastic syndromes. Haematol J 2004; Suppl 2: S245.

    Google Scholar 

  37. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP . Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002; 100: 3553–3560.

    Article  CAS  PubMed  Google Scholar 

  38. Sparrow RL, O'Flaherty E, Blanksby TM, Szer J, Van der Weyden MB . Perturbation in the ability of bone marrow stroma from patients with acute myeloid leukemia but not chronic myeloid leukemia to support normal early hematopoietic progenitor cells. Leuk Res 1997; 21: 29–36.

    Article  CAS  PubMed  Google Scholar 

  39. Mayani H . Composition and function of the hemopoietic microenvironment in human myeloid leukemia. Leukemia 1996; 10: 1041–1047.

    CAS  PubMed  Google Scholar 

  40. Jilani I, Estey E, Huh Y, Joe Y, Manshouri T, Yared M et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol 2002; 118: 560–566.

    Article  PubMed  Google Scholar 

  41. Mishima Y, Matsumoto-Mishima Y, Terui Y, Katsuyama M, Yamada M, Mori M et al. Leukemic cell-surface CD13/aminopeptidase N and resistance to apoptosis mediated by endothelial cells. J Natl Cancer Inst 2002; 94: 1020–1028.

    Article  CAS  PubMed  Google Scholar 

  42. Boultwood J, Wainscoat JS . Clonality in the myelodysplastic syndromes. Int J Hematol 2001; 73: 411–415.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the following grants: RTICC RD06/0020/0035 from the Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Madrid, Spain. JMS is supported by a grant from Ministerio de Sanidad y Consumo (CP05/00321) and PHC is supported by a grant from the European Commission (MSCNet contract no. 037602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Orfao.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matarraz, S., López, A., Barrena, S. et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia 22, 1175–1183 (2008). https://doi.org/10.1038/leu.2008.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.49

Keywords

This article is cited by

Search

Quick links