Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Repression of Gadd45α by activated FLT3 and GM-CSF receptor mutants contributes to growth, survival and blocked differentiation

Abstract

The tumor suppressor Gadd45α was earlier shown to be a repressed target of sustained receptor-mediated ERK1/2 signaling. We have identified Gadd45α as a downregulated gene in response to constitutive signaling from two FLT3 mutants (FLT3-ITD and FLT3-TKD) commonly found in AML, and a leukemogenic GM-CSF receptor trans-membrane mutant (GMR-V449E). GADD45A mRNA downregulation is also associated with FLT3-ITD+ AML. Sustained ERK1/2 signaling contributes significantly to receptor-mediated downregulation of Gadd45α mRNA in FDB1 cells expressing activated receptor mutants, and in the FLT3-ITD+ cell line MV4;11. Knockdown of Gadd45α with shRNA led to increased growth and survival of FDB1 cells and enforced expression of Gadd45α in FDB1 cells expressing FLT3-ITD or GMR-V449E resulted in reduced growth and viability. Gadd45α overexpression in FLT3-ITD+ AML cell lines also resulted in reduced growth associated with increased apoptosis and G1/S cell cycle arrest. Overexpression of Gadd45α in FDB1 cells expressing GMR-V449E was sufficient to induce changes associated with myeloid differentiation suggesting Gadd45α downregulation contributes to the maintenance of receptor-induced myeloid differentiation block. Thus, we show that ERK1/2-mediated downregulation of Gadd45α by sustained receptor signaling contributes to growth, survival and arrested differentiation in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parcells BW, Ikeda AK, Simms-Waldrip T, Moore TB, Sakamoto KM . FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells 2006; 24: 1174–1184.

    Article  CAS  PubMed  Google Scholar 

  2. Frohling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007; 12: 501–513.

    Article  CAS  PubMed  Google Scholar 

  3. Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K et al. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006; 107: 3700–3707.

    Article  CAS  PubMed  Google Scholar 

  4. Breitenbuecher F, Schnittger S, Grundler R, Markova B, Carius B, Brecht A et al. Identification of a novel type of ITD mutations located in non-juxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 2008, [e-pub ahead of print].

  5. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  PubMed  Google Scholar 

  6. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  7. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  8. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  9. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE . FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007; 110: 1262–1270.

    Article  CAS  PubMed  Google Scholar 

  10. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters--an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  11. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  12. Schwable J, Choudhary C, Thiede C, Tickenbrock L, Sargin B, Steur C et al. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood 2005; 105: 2107–2114.

    Article  PubMed  Google Scholar 

  13. Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E . Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol 2006; 16: 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  14. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA . GADD45b and GADD45 g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 2002; 192: 327–338.

    Article  CAS  PubMed  Google Scholar 

  15. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 1999; 96: 3706–3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoffman B, Liebermann DA . Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J cell physiol 2009; 218: 26–31.

    Article  CAS  PubMed  Google Scholar 

  17. Liebermann DA, Hoffman B . Gadd45 in Stress Signaling. J mol signal 2008; 3: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lal A, Gorospe M . Egad, more forms of gene regulation: the gadd45a story. Cell Cycle 2006; 5: 1422–1425.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Huper G, Guo Y, Murphy SK, Olson Jr JA, Marks JR . Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene 2005; 24: 2705–2714.

    Article  CAS  PubMed  Google Scholar 

  20. Yamasawa K, Nio Y, Dong M, Yamaguchi K, Itakura M . Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res 2002; 8: 2563–2569.

    CAS  PubMed  Google Scholar 

  21. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R et al. Genomic instability in Gadd45a-deficient mice. Nat Genet 1999; 23: 176–184.

    Article  CAS  PubMed  Google Scholar 

  22. Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 2002; 62: 7305–7315.

    CAS  PubMed  Google Scholar 

  23. Hollander MC, Patterson AD, Salvador JM, Anver MR, Hunger SP, Fornace AJ . Gadd45a acts as a modifier locus for lymphoblastic lymphoma. Leukemia 2005; 19: 847–850.

    Article  CAS  PubMed  Google Scholar 

  24. Hollander MC, Philburn RT, Patterson AD, Velasco-Miguel S, Friedberg EC, Linnoila RI et al. Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci USA 2005; 102: 13200–13205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tront JS, Hoffman B, Liebermann DA . Gadd45a Suppresses Ras-Driven Mammary Tumorigenesis by Activation of c-Jun NH2-Terminal Kinase and p38 Stress Signaling Resulting in Apoptosis and Senescence. Cancer Res 2006; 66: 8448–8454.

    Article  CAS  PubMed  Google Scholar 

  26. Brown AL, Wilkinson CR, Waterman SR, Kok CH, Salerno DG, Diakiw SM et al. Genetic regulators of myelopoiesis and leukemic signaling identified by gene profiling and linear modeling. J Leukoc Biol 2006; 80: 433–447.

    Article  CAS  PubMed  Google Scholar 

  27. Brown AL, Peters M, D′Andrea RJ, Gonda TJ . Constitutive mutants of the GM-CSF receptor reveal multiple pathways leading to myeloid cell survival, proliferation, and granulocyte-macrophage differentiation. Blood 2004; 103: 507–516.

    Article  CAS  PubMed  Google Scholar 

  28. Persons DA, Mehaffey MG, Kaleko M, Nienhuis AW, Vanin EF . An improved method for generating retroviral producer clones for vectors lacking a selectable marker gene. Blood Cells Mol Dis 1998; 24: 167–182.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins BJ, D′Andrea R, Gonda TJ . Activating point mutations in the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors suggest the involvement of beta subunit dimerization and cell type-specific molecules in signalling. EMBO J 1995; 14: 4276–4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonda TJ, D'Andrea RJ . Activating mutations in cytokine receptors: implications for receptor function and role in disease. Blood 1997; 89: 355–369.

    CAS  PubMed  Google Scholar 

  31. McCormack MP, Gonda TJ . Myeloproliferative disorder and leukaemia induced in mice by different classes of constitutive mutants of the human IL-3/IL-5/GM-CSF receptor common á subunit. Oncogene 1999; 18: 7190–7199.

    Article  CAS  PubMed  Google Scholar 

  32. McCormack MP, Gonda TJ . Novel murine myeloid cell lines which exhibit a differentiation switch in response to IL-3 or GM-CSF, or to different constitutively active mutants of the GM-CSF receptor á subunit. Blood 2000; 95: 120–127.

    CAS  PubMed  Google Scholar 

  33. Tam WF, Gu TL, Chen J, Lee BH, Bullinger L, Frohling S et al. Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells. Blood 2008; 112: 1981–1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCormack MP, Gonda TJ . Expression of activated mutants of the human interleukin-3/interleukin-5/granulocyte-macrophage colony-stimulating factor receptor common á subunit in primary hematopoietic cells induces factor-independent proliferation and differentiation. Blood 1997; 90: 1471–1481.

    CAS  PubMed  Google Scholar 

  35. Choudhary C, Muller-Tidow C, Berdel WE, Serve H . Signal transduction of oncogenic Flt3. Int J Hematol 2005; 82: 93–99.

    Article  CAS  PubMed  Google Scholar 

  36. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J . Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003; 102: 646–651.

    Article  CAS  PubMed  Google Scholar 

  37. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  38. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Doorn BvWv, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  39. Kuchenbauer F, Kern W, Schoch C, Kohlmann A, Hiddemann W, Haferlach T et al. Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica 2005; 90: 1617–1625.

    CAS  PubMed  Google Scholar 

  40. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takahashi S, Harigae H, Kameoka J, Sasaki T, Kaku M . AML1B transcriptional repressor function is impaired by the Flt3-internal tandem duplication. Br J Haematol 2005; 130: 428–436.

    Article  CAS  PubMed  Google Scholar 

  42. Sharrocks AD . Cell cycle: sustained ERK signalling represses the inhibitors. Curr Biol 2006; 16: R540–R542.

    Article  CAS  PubMed  Google Scholar 

  43. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat cell biol 2008; 10: 138–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296: 530–534.

    Article  CAS  PubMed  Google Scholar 

  45. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheikh MS, Hollander MC, Fornance Jr AJ . Role of Gadd45 in apoptosis. Biochem Pharmacol 2000; 59: 43–45.

    Article  CAS  PubMed  Google Scholar 

  47. Zerbini LF, Libermann TA . Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death. Cell Cycle 2005; 4: 18–20.

    Article  CAS  PubMed  Google Scholar 

  48. Fan W, Richter G, Cereseto A, Beadling C, Smith KA . Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene 1999; 18: 6573–6582.

    Article  CAS  PubMed  Google Scholar 

  49. Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 1999; 97: 575–586.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta SK, Gupta M, Hoffman B, Liebermann DA . Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 2006; 25: 5537–5546.

    Article  CAS  PubMed  Google Scholar 

  51. Constance CM, Morgan IV JI, Umek RM . C/EBPalpha regulation of the growth-arrest-associated gene gadd45. Mol Cell Biol 1996; 16: 3878–3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tao H, Umek RM . Reciprocal regulation of gadd45 by C/EBP alpha and c-Myc. DNA Cell Biol 1999; 18: 75–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Jenny Hardingham for her assistance with obtaining AML sample information. We also thank Mrs Sylvia Nobbs and Mr Sandy McIntyre for their help with flow cytometry. MP and RJD wrote the paper. MP and CHK performed the experiments and analyzed the data. CRW performed the microarray comparisons and provided statistical support. DGS performed experiments. SMY, SMD and IDL provided the AML material and performed the FLT3-ITD screening. ALB and TJG were involved in data analysis and critical review of the paper. The study is supported by grants from the US National Institutes of Health (R01 HL60657) and from the National Health and Medical Research Council of Australia (ID no. 453408). RJD was supported by the Peter Nelson Leukemia Research Fellowship. ALB was supported by Fellowships from the Leukemia Foundation of Australia and the Cancer Council of SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J D'Andrea.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perugini, M., Kok, C., Brown, A. et al. Repression of Gadd45α by activated FLT3 and GM-CSF receptor mutants contributes to growth, survival and blocked differentiation. Leukemia 23, 729–738 (2009). https://doi.org/10.1038/leu.2008.349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.349

Keywords

This article is cited by

Search

Quick links