Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy

Abstract

The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tallman MS, Gillliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527–532.

    CAS  PubMed  Google Scholar 

  3. Vey N, Mozzinconacci MJ, Groulet-Martinec A, Debono S, Finetti P, Carbuccia N et al. Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. Oncogene 2004; 23: 9381–9391.

    CAS  PubMed  Google Scholar 

  4. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337.

    CAS  PubMed  Google Scholar 

  5. Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006; 107: 1806–1809.

    CAS  PubMed  Google Scholar 

  6. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK) RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    CAS  PubMed  Google Scholar 

  7. Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 1998; 12: 887–892.

    CAS  PubMed  Google Scholar 

  8. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP . Mutations in the gene for granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceeded by severe congenital neutropenia. N Engl J Med 1995; 333: 487–493.

    CAS  PubMed  Google Scholar 

  9. Dong F, Dale DC, Bonilla MA, Freedman M, Fasth A, Neijens HJ et al. Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia 1997; 11: 120–125.

    CAS  PubMed  Google Scholar 

  10. Hiramatsu A, Miwa H, Shikami M, Ikai T, Tajima E, Yamamoto H et al. Disease-specific expression of VEGF and its receptors in AML cells; possible autocrine pathway of VEGF/type-1 receptor of VEGF in t(15;17) and AML in VEGF/type2 receptor of VEGF in t(8;21) AML. Leuk Lymph 2006; 47: 89–95.

    CAS  Google Scholar 

  11. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S . Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006; 107: 3847–3853.

    CAS  PubMed  Google Scholar 

  12. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    CAS  PubMed  Google Scholar 

  13. Gregorj C, Ricciardi MR, Petrucci MT, Scerpa MC, DeCave F, Fazi P et al. ERK1/2 phosphorylation is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood 2007; 109: 5473–5476.

    CAS  PubMed  Google Scholar 

  14. Milella M, Konopleva M, Precupanu CM, Tabe Y, Ricciardi MR, Gregorj C et al. MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 2007; 109: 2121–2129.

    CAS  PubMed  Google Scholar 

  15. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Staber PB, Linkesch W, Zauner D, Beham-Schmid C, Guelly C, Schauer S et al. Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 2004; 29: 894–904.

    Google Scholar 

  17. Stone RM, O’Donnell MR, Sekeres MA . Acute myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2004; 1: 98–117.

    Google Scholar 

  18. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004; 18: 103–112.

    CAS  PubMed  Google Scholar 

  19. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    CAS  PubMed  Google Scholar 

  20. Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003; 102: 1474–1479.

    CAS  PubMed  Google Scholar 

  21. Yokota S, Nakao M, Horiike S, Seriu T, Iwai T, Kaneko H et al. Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int J Hematol 1998; 67: 379–387.

    CAS  PubMed  Google Scholar 

  22. Hoelzer D, Gokbuget N . Recent approaches in acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol 2000; 36: 49–58.

    CAS  PubMed  Google Scholar 

  23. Pui CH, Evans WE . Genetic abnormalities and drug resistance in acute lymphoblastic leukemia. Adv Exp Med Biol 1999; 457: 383–389.

    CAS  PubMed  Google Scholar 

  24. Tazzari PL, Cappellini A, Ricci F, Papa V, Evangelisti C, Grafone T et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21: 427–438.

    CAS  PubMed  Google Scholar 

  25. Falini B, Nicletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biological and clinical features. Blood. 2007; 109: 874–885.

    CAS  PubMed  Google Scholar 

  26. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    CAS  PubMed  Google Scholar 

  27. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  28. Lancet JE, Gogo I, Gotib J, Feldman EJ, Greer J, Liesveld JL et al. A phase 2 study of the farnesyltransferase inhibitor tipifarinib in poor risk and elderly patients with previously untreated acute myeloid leukemia. Blood 2007; 109: 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000; 89: 1976–1982.

    CAS  PubMed  Google Scholar 

  30. Harris SL, Levine AJ . The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899–2908.

    CAS  PubMed  Google Scholar 

  31. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Konopleva M, Contractor R, Tsao T, Samudio L, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  33. Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M . MDM2 inhibitor Nutlin 3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006; 108: 993–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Steelman LS, Bertrand FE, McCubrey JA . The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets 2004; 8: 537–550.

    CAS  PubMed  Google Scholar 

  35. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PN, Blalock WL et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 2003; 22: 469–480.

    CAS  PubMed  Google Scholar 

  36. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007; 14: 2009–2023.

    CAS  PubMed  Google Scholar 

  37. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule Bad. Proc Natl Acad Sci USA 2001; 98: 9666–9670.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Navolanic PM, Steelman LS, McCubrey JA . EGFR family signaling and its association with breast cancer development and resistance to chemotherapy. Int J Oncol 2003; 22: 237–252.

    CAS  PubMed  Google Scholar 

  39. Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May Jr WS . Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 2001; 276: 23681–23688.

    CAS  PubMed  Google Scholar 

  40. Hollestelle A, Elstrodt F, Nagel JHA, Kallemeijn WW . Phosphatidylinositol-3-OH kinase or Ras pathway mutations in human breast cancer cell lines. Mol Cancer Res 2007; 5: 195–201.

    Article  CAS  PubMed  Google Scholar 

  41. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention. Leukemia 2002; 16: 486–507.

    CAS  PubMed  Google Scholar 

  42. Barnes G, Bulusu VR, Hardwick RH, Carroll N, Hatcher H, Earl HM et al. A review of the surgical management of metastatic gastrointestinal stromal tumours (GISTs) on imatinib mesylate (Glivectrade mark). Int J Surg 2005; 3: 206–212.

    CAS  PubMed  Google Scholar 

  43. Tortora G, Bianco R, Daniele G, Ciardiello F, McCubrey JA, Ricciardi MR et al. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumors and hematological malignancies. Curr Drug Design 2007; 10: 81–100.

    CAS  Google Scholar 

  44. Zeng Z, Sarbassov D, Samudio IJ, Yee KW, Munsell F, EllenJackson L et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007; 109: 3509–3512.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65: 7052–7058.

    CAS  PubMed  Google Scholar 

  46. Tamburini J, Chapuis N, Burdet V, Park S, Sujobert P, Willems L et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008; 111: 379–382.

    CAS  PubMed  Google Scholar 

  47. Shelton JG, Moye PW, Steelman LS, Blalock WL, Lee JT, Franklin RA et al. Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia 2003; 17: 1765–1782.

    CAS  PubMed  Google Scholar 

  48. Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR et al. Identification of potent, selective kinase inhibitors of Raf. Proc Am Assoc Cancer Res Annual Meeting 1998; 39: 558.

    Google Scholar 

  49. Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 6: 559–568.

    CAS  PubMed  Google Scholar 

  50. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–225.

    CAS  PubMed  Google Scholar 

  51. Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RI, Bommann WJ et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008; e-pub ahead of print Jan 17 (in press).

  52. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    CAS  PubMed  Google Scholar 

  53. Workman P . Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 2004; 10: 47–51.

    CAS  PubMed  Google Scholar 

  54. Nimmanapalli R, Bhalla K . Novel targeted therapies for Bcr-Abl positive acute leukemias: beyond STI571. Oncogene 2002; 21: 8584–8590.

    CAS  PubMed  Google Scholar 

  55. Hawkins LM, Jayanthan AA, Narendran A . Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on pediatric acute lymphoblastic leukemia (ALL) with respect to Bcr-Abl status and imatinib mesylate sensitivity. Pediatr Res 2005; 57: 430–437.

    CAS  PubMed  Google Scholar 

  56. Milella M, Precupanu CM, Gregorj C, Ricciardi MR, Petrucci MT, Kornblau SM . Tafuri A, Andreeff M. Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Des 2005; 11: 2779–2795.

    CAS  PubMed  Google Scholar 

  57. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–820.

    CAS  PubMed  Google Scholar 

  58. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 2008; 22: 147–160.

    CAS  PubMed  Google Scholar 

  59. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    CAS  PubMed  Google Scholar 

  60. Rolfe M, McLeod LE, Pratt PF, Proud CG . Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem J 2005; 388: 973–984.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Crossman LC, O’Hare T, Lange T, Willis SG, Stoffregen EP, Corgbin AS et al. A signle nucleotide polymorphism in the coding region of ABL and its effects on sensitivity to imatinib. Leukemia 2005; 19: 1859–1862.

    CAS  PubMed  Google Scholar 

  62. Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007; 21: 1267–1275.

    CAS  PubMed  Google Scholar 

  63. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    CAS  PubMed  Google Scholar 

  64. Barnes DJ, De S, van Hensbergen P, Moravcsilk E, Melo JV . Different target range and cytotoxic specificity of adaphostin and 17-allylamino-17-demethoxygeldanamycin in imatinib-resistant and sensitive cell lines. Leukemia 2007; 21: 421–426.

    CAS  PubMed  Google Scholar 

  65. Sherbenou DW, Wong MJ, Humayun A, McGreevey LS, Harrell P, Yang R et al. Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib. Leukemia 2007; 21: 489–493.

    CAS  PubMed  Google Scholar 

  66. Crescenzi B, Chase A, Starza RL, Beacci D, Rosti V, Galli A et al. FIP1L1-PDGFRA in chronic eosinophilic leukemia and BCR-ABL1 in chronic myeloid leukemia affect different leukemic cells. Leukemia 2007; 21: 397–402.

    CAS  PubMed  Google Scholar 

  67. Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M et al. Overexpresion of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 2007; 21: 93–101.

    CAS  PubMed  Google Scholar 

  68. Ma W, Kantarjian H, Jilani I, Gorre M, Bhalla K, Ottmann O et al. Heterogeneity in detecting Abl kinase mutations and better sensitivity using circulating plasma RNA. Leukemia 2006; 20: 1989–1991.

    CAS  PubMed  Google Scholar 

  69. Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 2006; 20: 1767–1773.

    CAS  PubMed  Google Scholar 

  70. Chung Y-J, Kim T-M, Kim D-M, Namkoong H, Kim HK, Ha S-A et al. Gene expression signatures associated with the resistance to imatinib. Leukemia 2006; 20: 1542–1550.

    CAS  PubMed  Google Scholar 

  71. Frank O, Brors B, Fabarius A, Li L, Haak M, Merk S et al. Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients. Leukemia 2006; 20: 1400–1407.

    CAS  PubMed  Google Scholar 

  72. Nicolini FE, Corm S, Le Q-H, Sorel N, Hayette S, Bories D et al. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP0. Leukemia 2006; 20: 1061–1066.

    CAS  PubMed  Google Scholar 

  73. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia 2006; 20: 1028–1034.

    CAS  PubMed  Google Scholar 

  74. Cilloni D, Messa F, Arruga F, Defilippi I, Morotti A, Messa E et al. The NF-kappaB pathway blockade by the IKK inhibitor PS1145 can overcome imatinib resistance. Leukemia 2006; 20: 61–67.

    CAS  PubMed  Google Scholar 

  75. Miething C, Feihl S, Mugler C, Grundler R, von Bubnoff N, Lordick F et al. The Bcr-Abl mutations T3151 and Y253 H do not confer a growth advantage in the absence of imatinib. Leukemia 2006; 20: 650–657.

    CAS  PubMed  Google Scholar 

  76. Khrashad JS, Anand M, Marin D, Saunders S, Al-Jabary T, Iqbal A et al. The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia 2006; 20: 939–940.

    Google Scholar 

  77. Rea D, Legros L, Raffoux E, Thomas X, Turlure P, Maury S et al. High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia 2006; 20: 400–403.

    CAS  PubMed  Google Scholar 

  78. Alvarez-Larran A, Cervantes F, Bellosillo B, Giralt M, Julia A, Hernandez-Boluda JC et al. Essential thrombocythemia in young individuals: frequency and risk factors for vascular events and evolution to myelofibrosis in 126 patients. Leukemia 2007; 21: 1218–1223.

    CAS  PubMed  Google Scholar 

  79. Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007; 21: 1183–1188.

    CAS  PubMed  Google Scholar 

  80. Jost E, Do ON, Dahl E, Maintz CE, Jousten P, Habets L et al. Epigenetic alterations complement mutation of Jak2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 2007; 21: 505–510.

    CAS  PubMed  Google Scholar 

  81. Mesa RA, Tefferi A, Lasho TS, Loegering D, McClure RF, Powell HL et al. Janus kinase (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis ion myelofibrosis with myeloid metaplasia. Leukemia 2006; 20: 1800–1808.

    CAS  PubMed  Google Scholar 

  82. Steensma DP, Caudill JS, Pardanani A, McClure RF, Lasho TL, Tefferi A . MPL W515 and Jak2 V617 mutation analysis in patients with refractory anemia with ringed sideroblasts and an elevated platelet count. Leukemia 2006; 20: 971–978.

    CAS  PubMed  Google Scholar 

  83. Vannucchi AM, Pancrazzi A, Bogani C, Antonioli E, Guglielmelli P . A quantitative assay for Jak2 (V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia 2006; 20: 1055–1060.

    CAS  PubMed  Google Scholar 

  84. DeKeersmaecker K, Cools J . Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia 2006; 20: 200–205.

    CAS  Google Scholar 

  85. Bellosillo B, Martinez-Aviles L, Gimeno E, Florensa L, Longaron R, Navarro G et al. A higher Jak2 V617F-mutated clone is observed in platelets than in granulocytes from essential thrombocythemia patients, but not in patients with polycythemia vera and primary myelofibrosis. Leukemia 2007; 21: 1331–1332.

    CAS  PubMed  Google Scholar 

  86. Nishii K, Nanbu R, Lorenzo VF, Monma F, Kato K, Ryuu H et al. Expression of the Jak2 V617F mutation is not found in de novo AML and MDS but is detected in MDS-derived leukemia of megakaryoblastic nature. Leukemia 2007; 21: 1337–1338.

    CAS  PubMed  Google Scholar 

  87. Pardanani A . JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 2008; 22: 23–30.

    Article  CAS  PubMed  Google Scholar 

  88. Wong CLP, Ma ESK, Wang CLN, Lam HY, Ma SY . Jak2 V617F due to a novel TG → CT mutation at nucleotides 1848–1849: diagnostic implication. Leukemia 2007; 21: 1344–1346.

    CAS  PubMed  Google Scholar 

  89. Ohyashiki K, Aota Y, Akahane D, Gotoh A, Ohyashiki JH . Jak2(V617F) mutational status as determined by semiquantitative sequence-specific primer-single molecule fluorescence detection assay is linked to clinical features in chronic myeloproliferative disorders. Leukemia 2007; 21: 1097–1099.

    CAS  PubMed  Google Scholar 

  90. Hermouet S, Dobo I, Lippert E, Boursier M-C, Ergand L, Perrault-Hu F et al. Comparison of whole blood vs purified blood granulocytes for the detection and quantitation of Jak2(V617F). Leukemia 2007; 21: 1128–1130.

    CAS  PubMed  Google Scholar 

  91. Inami M, Inokuchi K, Okabe M, Kosaka F, Mitamura Y, Yamaguchi H et al. Polycythemia associated with the Jak2V617F mutation emerged during treatment of chronic myelogenous leukemia. Leukemia 2007; 21: 1103–1104.

    CAS  PubMed  Google Scholar 

  92. Schnittger S, Bacher Uk, Kern W, Haferlach C, Haferlach T . Jak2 seems to be a typical cooperating mutation in therapy-related t(8;21)/AML1-ETO-positive AML. Leukemia 2007; 21: 183–184.

    CAS  PubMed  Google Scholar 

  93. Verstovsek S, Silver RT, Cross NC, Tefferi A . Jak2V617F mutational frequency in polycythemia vera: 100%, >90%. Leukemia 2006; 20: 2067.

    CAS  PubMed  Google Scholar 

  94. Mesa RA, Tefferi A, Li CY, Steensma DP . Hematologic and cytogenetic response to lenalidomide monotherapy in acute myeloid leukemia arising from Jak2(V617F) positive, del(5)(q13q33) myelodysplastic syndrome. Leukemia 2006; 20: 2063–2064.

    CAS  PubMed  Google Scholar 

  95. Renneville A, Quesnel B, Charpentier A, Terriou L, Crinquette A, Lai JL . High occurrence of Jak2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 2006; 20: 2067–2070.

    CAS  PubMed  Google Scholar 

  96. Ceesay MM, Lea NC, Ingram W, Westwood NB, Gäken J, Mohamedali A et al. The Jak2 V617F mutation is rare in RARS but common in RARS-T. Leukemia 2006; 20: 2060–2061.

    CAS  PubMed  Google Scholar 

  97. Di Ianni M, Moretti L, Del Papa B, Gaozza E, Bell AS, Falzetti F et al. A microelectronic DNA chip detects the V617F Jak-2 mutation in myeloproliferative disorders. Leukemia 2006; 20: 1895–1897.

    CAS  PubMed  Google Scholar 

  98. Florensa L, Bellosillo B, Besses C, Puigdecanet E, Espinet B, Pérez-Vila E et al. Jak2 V617F mutation analysis in different myeloid lineages (granulocytes, platelets, CFU-MK, BFU-E and CFU-GM) in essential thrombocythemia patients. Leukemia 2006; 20: 1903–1905.

    CAS  PubMed  Google Scholar 

  99. Fiorini A, Farina G, Reddiconto G, Palladino M, Rossi E, Za T et al. Screening of Jak2 V617F mutation in multiple myeloma. Leukemia 2006; 20: 1912–1913.

    CAS  PubMed  Google Scholar 

  100. Park MJ, Shimada A, Asada H, Koike K, Tsuchida M, Hayashi Y . Jak2 mutation in a boy with polycythemia vera, but not in other pediatric hematologic disorders. Leukemia 2006; 20: 1453–1454.

    CAS  PubMed  Google Scholar 

  101. Chen CY, Lin LI, Tang JL, Tsay W, Chang HH, Yeh YC et al. Acquisition of Jak2, PTPN11, and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia 2006; 20: 1155–1158.

    PubMed  Google Scholar 

  102. Murati A, Adélaïde J, Gelsi-Boyer V, Etienne A, Rémy V, Fezoui H et al. t(5;12)(q23–31;p13) with ETV6-ACSL6 gene fusion in polycythemia vera. Leukemia 2006; 20: 1175–1178.

    CAS  PubMed  Google Scholar 

  103. Yip SF, So CC, Chan AY, Liu HY, Wan TsK, Chan LC . The lack of association between Jak2 V617F mutation and myelodysplastic syndrome with or without myelofibrosis. Leukemia 2006; 20: 1165.

    CAS  PubMed  Google Scholar 

  104. McClure R, Mai M, Lasho T . Validation of two clinically useful assays for evaluation of Jak2 V617F mutation in chronic myeloproliferative disorders. Leukemia 2006; 20: 168–171.

    CAS  PubMed  Google Scholar 

  105. Melzner I, Weniger MA, Menz CK, Möller P . Absence of the Jak2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Leukemia 2006; 20: 157–158.

    CAS  PubMed  Google Scholar 

  106. Bellosillo B, Besses C, Florensa L, Solé F, Serrano S . Jak2 V617F mutation, PRV-1 overexpression and endogenous erythroid colony formation show different coexpression patterns among Ph-negative chronic myeloproliferative disorders. Leukemia 2006; 20: 736–737.

    CAS  PubMed  Google Scholar 

  107. Desta F, Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Activating mutations of Jak2V617F are uncommon in t-MDS and t-AML and are only observed in atypic cases. Leukemia 2006; 20: 547–548.

    CAS  PubMed  Google Scholar 

  108. Vizmanos JL, Ormazábal C, Larráyoz MJ, Cross NC, Calasanz MJ . Jak2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia 2006; 20: 534–535.

    CAS  PubMed  Google Scholar 

  109. Kratz CP, Böll S, Kontny U, Schrappe M, Niemeyer CM, Stanulla M . Mutational screen reveals a novel Jak2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 2006; 20: 381–383.

    CAS  PubMed  Google Scholar 

  110. James C, Delhommeau F, Marzac C, Teyssandier I, Couédic JP, Giraudier S et al. Detection of Jak2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia 2006; 20: 350–353.

    CAS  PubMed  Google Scholar 

  111. Ohyashiki K, Aota Y, Akahane D, Gotoh A, Miyazawa K, Kimura Y et al. The Jak2 V617F tyrosine kinase mutation in myelodysplastic syndromes (MDS) developing myelofibrosis indicates the myeloproliferative nature in a subset of MDS patients. Leukemia 2005; 19: 2359–2360.

    CAS  PubMed  Google Scholar 

  112. Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V et al. Clinical implications of the Jak2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19: 1847–1849.

    CAS  PubMed  Google Scholar 

  113. Chen CY, Lin LI, Tang JL, Tsay W, Chang HH, Yeh YC et al. Acquisition of Jak2, PTPN11, and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia 2006; 20: 1155–1158.

    PubMed  Google Scholar 

  114. Ray A, Cown-Jacob SW, Manley PW, Mestan J, Griffin JD . Identification of BCR-ABL point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood 2007; 109: 5011–5015.

    CAS  PubMed  Google Scholar 

  115. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    CAS  PubMed  Google Scholar 

  116. Nicolini FE, Corm S, Le Q-H, Sorel N, Hayette S, Bories D et al. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 2006; 20: 1061–1066.

    CAS  PubMed  Google Scholar 

  117. Ma W, Kantarjian H, Jilani I, Gorre M, Bhalla K, Ottmann O et al. Heterogeneity in detecting Abl kinase mutations and better sensitivity using circulating plasma RNA. Leukemia 2006; 20: 1989–1991.

    CAS  PubMed  Google Scholar 

  118. Miething C, Feihl S, Mugler C, Grundler R, von Bubnoff N, Lordick F et al. The Bcr-Abl mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib. Leukemia 2006; 20: 650–657.

    CAS  PubMed  Google Scholar 

  119. Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O’Brien S et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 2007; 110: 4005–4011.

    CAS  PubMed  Google Scholar 

  120. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ . MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007; 109: 500–502.

    CAS  PubMed  Google Scholar 

  121. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL et al. Sequential Abl kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest 2007; 117: 2562–2569.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Modugno M, Casale E, Soncini C, Rosettani P, Colombo R, Lupi R et al. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358. Cancer Res 2007; 67: 7987–7990.

    CAS  PubMed  Google Scholar 

  123. Peng C, Brian J, Hu Y, Goodrich A, Kong L, Grayzel D et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood 2007; 110: 678–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nguyen TK, Rahmani M, Harada H, Dent P, Grant S . MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825. Blood 2007; 109: 4006–4015.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dong S, Kang S, Lonial S, Khoury HJ, Viallet J, Chen J . Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070. Leukemia 2008; 22: 572–577.

    CAS  PubMed  Google Scholar 

  126. Zhang B, Groffen J, Heisterkamp N . Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells. Leukemia 2007; 21: 1189–1197.

    CAS  PubMed  Google Scholar 

  127. Tagliafico E, Tenedini E, Manfredini R, Grande A, Ferrari F, Roncaglia E et al. Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 2006; 20: 1751–1758.

    CAS  PubMed  Google Scholar 

  128. Chung YJ, Kim TM, Kim DW, Namkoong H, Kim HK, Ha SA et al. Gene expression signatures associated with the resistance to imatinib. Leukemia 2006; 20: 1542–1550.

    CAS  PubMed  Google Scholar 

  129. Cavo M . Proteasome inhibitor bortezomib for the treatment of multiple myeloma. Leukemia 2006; 20: 1341–1352.

    CAS  PubMed  Google Scholar 

  130. Meier M, den Boer ML, Meijerink JP, Broekhuis MJ, Passier MM, van Wering ER et al. Differential expression of p73 isoforms in relation to drug resistance in childhood T-lineage acute lymphoblastic leukaemia. Leukemia 2006; 20: 1377–1384.

    CAS  PubMed  Google Scholar 

  131. Karajannis MA, Vincent L, Direnzo R, Shmelkov SV, Zhang F, Feldman EJ et al. Activation of FGFR1beta signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells. Leukemia 2006; 20: 979–986.

    CAS  PubMed  Google Scholar 

  132. Hamilton A, Elrick L, Myssina S, Copland M, Jørgensen H, Melo JV et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 2006; 20: 1035–1039.

    CAS  PubMed  Google Scholar 

  133. Blalock WL, Steelman LS, Shelton JG, Moye PW, Lee JT, Franklin RA et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    CAS  PubMed  Google Scholar 

  134. Zhu K, Gerbino E, Beaupre DM, Mackley PA, Muro-Cacho C, Beam C et al. Farnesyltransferase inhibitor R115777 (zarnestra, tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells. Blood 2005; 105: 4759–4766.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X, Huguet F et al. A phase 2 study of the oral farnesyl transferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 2007; 109: 5151–5156.

    CAS  PubMed  Google Scholar 

  136. Sosman JA, Puzanov I, Atkins MB . Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin Cancer Res 2007; 13: 764s–7769s.

    CAS  PubMed  Google Scholar 

  137. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S . Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood 2002; 100: 3333–3343.

    CAS  PubMed  Google Scholar 

  138. Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A . Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia 2005; 19: 234–244.

    CAS  PubMed  Google Scholar 

  139. Lunghi P, Costanzo A, Salvatore L, Noguera N, Mazzera L, Tabilio A et al. MEK1 inhibition sensitizes primary acute myelogenous leukemia to arsenic trioxide-induced apoptosis. Blood 2006; 107: 4549–4553.

    CAS  PubMed  Google Scholar 

  140. Rieber M, Rieber MS . Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 status. Int J Cancer 2006; 118: 1135–1143.

    CAS  PubMed  Google Scholar 

  141. Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 2007; 21: 886–896.

    CAS  PubMed  Google Scholar 

  142. Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S . Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways. Mol Cancer Ther 2005; 4: 457–470.

    CAS  PubMed  Google Scholar 

  143. Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C et al. Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 2005; 105: 1706–1716.

    CAS  PubMed  Google Scholar 

  144. Yu C, Mao X, Li WX . Inhibition of the PI3K pathway sensitizes fludarabine-induced apoptosis in human leukemic cells through an inactivation of MAPK-dependent pathway. Biochem Biophys Res Commun 2005; 331: 391–397.

    CAS  PubMed  Google Scholar 

  145. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006; 107: 4053–4062.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Luo Y, Shoemaker AR, Liu X, Woods KW, Thomas SA, deJong R et al. Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther 2005; 4: 977–986.

    CAS  PubMed  Google Scholar 

  147. Pearce DJ, Taussig DJ, Bonnet D . Implications of the expression of myeloid markers on normal and leukemic stem cells. Cell Cycle 2006; 5: 271–273.

    CAS  PubMed  Google Scholar 

  148. Feldman EJ, Brandwein J, Stone R, Kalaycio M, Moore J, O’Conner J et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Orthod 2005; 23: 4110–4116.

    CAS  Google Scholar 

  149. Amadori S, Suciu S, Stasi R, Willemze R, Mandelli F, Selleslag D et al. Gemtuzumab ozogamicin (Mylotarg) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell’Adulto Leukemia Groups. Leukemia 2005; 19: 1768–1773.

    CAS  PubMed  Google Scholar 

  150. Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER et al. Synergy between an IGF-IR antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 2006; 20: 1254–1260.

    CAS  PubMed  Google Scholar 

  151. Rizo A, Vellenga E, de Haan G, Schuringa JJ . Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 2006; 15: 210–219.

    Google Scholar 

  152. Li Z, Li L . Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 2006; 31: 589–595.

    CAS  PubMed  Google Scholar 

  153. Dalton WS, Hazlehurst L, Shain K, Landowski T, Alsina M . Targeting the bone marrow microenvironment in hematologic malignancies. Semin Hematol. 2004; 41: 1–5.

    CAS  PubMed  Google Scholar 

  154. Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res 1998; 58: 5565–5569.

    CAS  PubMed  Google Scholar 

  155. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    CAS  PubMed  Google Scholar 

  156. Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W et al. Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 2007; 67: 684–694.

    CAS  PubMed  Google Scholar 

  157. Astier AL, Xu R, Svoboda M, Hinds E, Munoz O, de Beaumont R et al. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival. Blood 2003; 101: 1118–1127.

    CAS  PubMed  Google Scholar 

  158. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  159. Ho AD, Wagner W . Bone marrow niche and leukemia. Ernst Schering Found Symp Proc 2006; 5: 125–139.

    Google Scholar 

  160. Ravandi F, Estrov Z . Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin Cancer Res 2006; 12: 340–344.

    CAS  PubMed  Google Scholar 

  161. Goodell MA, Rosenzweig M, Kim H, Marks DR, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 12: 1337–1345.

    Google Scholar 

  162. Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001; 98: 1166–1173.

    CAS  PubMed  Google Scholar 

  163. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    CAS  PubMed  Google Scholar 

  164. Raaijmakers MHGP . ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutic targets in acute and chronic myeloid leukemia. Leukemia 2007; 21: 2094–2102.

    CAS  PubMed  Google Scholar 

  165. Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL et al. Aldehyde dehydrogenase activity in leukeic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 2007; 21: 1423–1430.

    CAS  PubMed  Google Scholar 

  166. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    CAS  PubMed  Google Scholar 

  167. Frankel AE, McCubrey JA, Miller MS, Delatte S, Ramage J, Kiser M et al. Diptheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000; 14: 576–585.

    CAS  PubMed  Google Scholar 

  168. Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE . Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003; 17: 155–159.

    CAS  PubMed  Google Scholar 

  169. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    CAS  PubMed  Google Scholar 

  170. Jiang X, Saw KM, Eaves A, Eaves C . Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 2007; 99: 680–693.

    CAS  PubMed  Google Scholar 

  171. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M . Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 2006; 12: 1181–1184.

    CAS  PubMed  Google Scholar 

  172. Mikesch JH, Steffen B, Berdel WE, Serve H, Muller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    CAS  PubMed  Google Scholar 

  173. Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L et al. Internal tandem duplications of the Flt-3 gene are present in leukemia stem cells. Blood 2005; 106: 673–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB et al. Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    CAS  PubMed  Google Scholar 

  175. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Hargalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    CAS  PubMed  Google Scholar 

  176. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M et al. The Wilm's tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007; 21: 1783–1791.

    CAS  PubMed  Google Scholar 

  177. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007; 21: 2762–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Out HH et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 2006; 38: 1269–1277.

    CAS  PubMed  Google Scholar 

  179. Somervaille TC, Cleary ML . PU.1 and Junb: suppressing the formation of acute myeloid leukemia stem cells. Cancer Cell 2006; 10: 456–457.

    CAS  PubMed  Google Scholar 

  180. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem Biophys Acta 2007; 1773: 1263–1284.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JAM and LSS have been supported in part by a grant from the NIH (R01098195). JB was supported in part by the Deutsche Krebshilfe. AB, PL, MM and AT were supported in part by grants from Associazione Italiana Ricerca sul Cancro (AIRC). AMM was supported in part by grants from the CARISBO Foundation and the Progetti Strategici Università di Bologna EF2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A McCubrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCubrey, J., Steelman, L., Abrams, S. et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22, 708–722 (2008). https://doi.org/10.1038/leu.2008.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.27

Keywords

This article is cited by

Search

Quick links