Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia

Abstract

The aim of the study was to analyze the impact of minimal residual disease (MRD) after reinduction therapy on the outcome of children with relapsed ‘high-risk’ acute lymphoblastic leukemia (ALL). Sixty patients with isolated or combined marrow relapse were studied. All patients belonged to the S3 or S4 groups, as defined by the Berlin–Frankfurt–Münster stratification for relapsed ALL. MRD was studied by real-time quantitative PCR after the first, second and third chemotherapy course (time points 1 (TP1), 2 (TP2) and 3 (TP3), respectively). MRD results, not used for treatment refinement, were categorized as negative (NEG MRD), positive not-quantifiable (POS-NQ MRD) when MRD level was below quantitative range (a level <10−4) or positive within quantitative range (POS MRD) when MRD level was 10−4. With a median observation time of 15 months, overall 3-year event-free survival (EFS) was 27%. The 3-year EFS was 73, 45 and 19% for patients with NEG-MRD, POS NQ-MRD and POS-MRD at TP1, respectively (P<0.05). The prognostic predictive value of MRD was statistically confirmed in multivariate analysis. MRD quantitation early and efficiently differentiates patients who benefit from conventional treatment, including allogeneic hematopoietic stem cell transplantation, from those needing innovative, experimental therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  2. Henze G, Fengler R, Hartmann R, Kornhuber B, Janka-Schaub G, Niethammer D et al. Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group. Blood 1991; 78: 1166–1172.

    CAS  PubMed  Google Scholar 

  3. Gaynon PS, Qu RP, Chappell RJ, Willoughby ML, Tubergen DG, Steinherz PG et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse—the Children's Cancer Group Experience. Cancer 1998; 82: 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  4. Lawson SE, Harrison G, Richards S, Oakhill A, Stevens R, Eden OB et al. The UK experience in treating relapsed childhood acute lymphoblastic leukaemia: a report on the medical research council UKALLR1 study. Br J Haematol 2000; 108: 531–543.

    Article  CAS  PubMed  Google Scholar 

  5. Testi AM, Del Giudice I, Arcese W, Moleti ML, Giona F, Basso G et al. A single high dose of idarubicin combined with high-dose ARA-C for treatment of first relapse in childhood ‘high-risk’ acute lymphoblastic leukaemia: a study of the AIEOP group. Br J Haematol 2002; 118: 741–747.

    Article  CAS  PubMed  Google Scholar 

  6. Einsiedel HG, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-frankfurt-Munster group 87. J Clin Oncol 2005; 23: 7942–7950.

    Article  PubMed  Google Scholar 

  7. Borgmann A, von Stackelberg A, Hartmann R, Ebell W, Klingebiel T, Peters C et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 2003; 101: 3835–3839.

    Article  CAS  PubMed  Google Scholar 

  8. Chessells JM, Leiper AD, Richards SM . A second course of treatment for childhood acute lymphoblastic leukaemia: long-term follow-up is needed to assess results. Br J Haematol 1994; 86: 48–54.

    Article  CAS  PubMed  Google Scholar 

  9. Giona F, Testi AM, Rondelli R, Amadori S, Arcese W, Meloni G et al. ALL R-87 protocol in the treatment of children with acute lymphoblastic leukaemia in early bone marrow relapse. Br J Haematol 1997; 99: 671–677.

    Article  CAS  PubMed  Google Scholar 

  10. Jacquy C, Delepaut B, Van Daele S, Vaerman JL, Zenebergh A, Brichard B et al. A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol 1997; 98: 140–146.

    Article  CAS  PubMed  Google Scholar 

  11. Cazzaniga G, Biondi A . Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica 2005; 90: 382–390.

    CAS  PubMed  Google Scholar 

  12. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  13. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, van den Berg H, Behrendt H, Slater RM et al. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia. Leukemia 1995; 9: 1726–1734.

    CAS  PubMed  Google Scholar 

  14. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241.

    Article  CAS  PubMed  Google Scholar 

  15. Szczepanski T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkuijs AJM, van Wering ER et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor αβ lineage. Blood 1999; 93: 4079–4085.

    CAS  PubMed  Google Scholar 

  16. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  17. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  18. Germano G, Songia S, Biondi A, Basso G . Rapid detection of clonality in patients with acute lymphoblastic leukemia. Haematologica 2001; 86: 382–385.

    CAS  PubMed  Google Scholar 

  19. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  20. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  21. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  22. van der Velden VHJ, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJM . T cell receptor gamma gene rearrangements as target for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  23. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan EL, Meier P . Nonparametral estimation from incomplete observations. Am Stat Assoc 1958; 53: 457.

    Article  Google Scholar 

  25. Pepe MS, Longton G, Pettinger M, Mori M, Fisher LD, Storb R . Summarizing data on survival, relapse, and chronic graft-versus-host disease after bone marrow transplantation: motivation for and description of new methods. Br J Haematol 1993; 83: 602–607.

    Article  CAS  PubMed  Google Scholar 

  26. Gooley TA, Leisenring W, Crowley J, Storer BE . Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695–706.

    Article  CAS  PubMed  Google Scholar 

  27. Klein JP, Rizzo JD, Zhang MJ, Keiding N . Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part I: unadjusted analysis. Bone Marrow Transplant 2001; 28: 909–915.

    Article  CAS  PubMed  Google Scholar 

  28. Cox DR . Regression models and life tables. J Royal Stat Soc B 1972; 34: 187.

    Google Scholar 

  29. Klein JP, Rizzo JD, Zhang MJ, Keiding N . Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part 2: regression modeling. Bone Marrow Transplant 2001; 28: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  30. Harms DO, Janka-Schaub GE . Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 2000; 14: 2234–2239.

    Article  CAS  PubMed  Google Scholar 

  31. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia 2000; 14: 2205–2222.

    Article  CAS  PubMed  Google Scholar 

  32. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001; 97: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  33. Pui CH, Sandlund JT, Pei D, Campana D, Rivera GK, Ribeiro RC et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood 2004; 104: 2690–2696.

    Article  CAS  PubMed  Google Scholar 

  34. Buchanan GR, Rivera GK, Pollock BH, Boyett JM, Chauvenet AR, Wagner H et al. Alternating drug pairs with or without periodic reinduction in children with acute lymphoblastic leukemia in second bone marrow remission: a Pediatric Oncology Group Study. Cancer 2000; 88: 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  35. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  36. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  PubMed  Google Scholar 

  37. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H . Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790–794.

    CAS  PubMed  Google Scholar 

  38. Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004; 18: 499–504.

    Article  CAS  PubMed  Google Scholar 

  39. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  PubMed  Google Scholar 

  40. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  41. Krejci O, van der Velden VH, Bader P, Kreyenberg H, Goulden N, Hancock J et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant 2003; 32: 849–851.

    Article  CAS  PubMed  Google Scholar 

  42. Jeha S, Gaynon PS, Razzouk BI, Franklin J, Kadota R, Shen V et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 2006; 24: 1917–1923.

    Article  CAS  PubMed  Google Scholar 

  43. De Angelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 2007; 109: 5136–5142.

    Article  CAS  Google Scholar 

  44. Wayne AS, Findley HW, Lew G, Ahuja Y, Gu L, Stetler-Stevenson M et al. Targeting CD22 in childhood B-precursor acute lymphoblastic leukemia (Pre-B ALL): pre-clinical studies and phase I trial of the anti-CD22 immunotoxin CAT-3888 (BL22). Blood 2007; 110: 771.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Valentino Conter for his valuable contribution to the design of the protocol AIEOP ALL REC 2003. This work has been partly supported by grants from AIRC (Associazione Italiana Ricerca sul Cancro), CNR (Consiglio Nazionale delle Ricerche), MURST (Ministero dell'Università e della Ricerca Scientifica e Tecnologica), European Union (FP6 programs ALLOSTEM) and Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Policlinico San Matteo to FL and Fondazione Città Della Speranza and Fondazione CARIPARO to GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Locatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paganin, M., Zecca, M., Fabbri, G. et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia 22, 2193–2200 (2008). https://doi.org/10.1038/leu.2008.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.227

Keywords

This article is cited by

Search

Quick links