Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cooperating gene mutations in acute myeloid leukemia: a review of the literature

Abstract

Acute myeloid leukemia (AML) is a heterogeneous group of neoplastic disorders with great variability in clinical course and response to therapy, as well as in the genetic and molecular basis of the pathology. Major advances in the understanding of leukemogenesis have been made by the characterization and the study of acquired cytogenetic abnormalities, particularly reciprocal translocations observed in AML. Besides these major cytogenetic abnormalities, gene mutations also constitute key events in AML pathogenesis. In this review, we describe the contribution of known gene mutations to the understanding of AML pathogenesis and their clinical significance. To gain more insight in this understanding, we clustered these alterations in three groups: (1) mutations affecting genes that contribute to cell proliferation (FLT3, c-KIT, RAS, protein tyrosine standard phosphatase nonreceptor 11); (2) mutations affecting genes involved in myeloid differentiation (AML1 and CEBPA) and (3) mutations affecting genes implicated in cell cycle regulation or apoptosis (P53, NPM1). This nonexhaustive review aims to show how gene mutations interact with each other, how they contribute to refine prognosis and how they can be useful for risk-adapted therapeutic management of AML patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 49–64.

    CAS  Google Scholar 

  2. Agnes F, Shamoon B, Dina C, Rosnet O, Birnbaum D, Galibert F . Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene 1994; 145: 283–288.

    CAS  Google Scholar 

  3. Gilliland DG, Griffin JD . The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–1542.

    CAS  Google Scholar 

  4. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096.

    CAS  Google Scholar 

  5. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  Google Scholar 

  6. Schnittger S, Schoch C, Kern W, Mecuci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myeloid leukemia with normal karyotype. Blood 2005; 106: 3733–3739.

    CAS  Google Scholar 

  7. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16–60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    CAS  Google Scholar 

  8. Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J 2002; 3: 283–289.

    CAS  Google Scholar 

  9. Beran M, Luthra R, Kantarjian H, Estey E . FLT3 mutation and response to intensive chemotherapy in young adult and elderly patients with normal karyotype. Leuk Res 2004; 28: 547–550.

    CAS  Google Scholar 

  10. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype [erratum in Clin Cancer Res 2005;11: 5659]. Clin Cancer Res 2005; 11: 1416–1424.

    CAS  Google Scholar 

  11. Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM et al. Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 2005; 106: 3618–3620.

    CAS  Google Scholar 

  12. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107: 4011–4020.

    CAS  Google Scholar 

  13. Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13: 38–43.

    CAS  Google Scholar 

  14. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525–529.

    CAS  Google Scholar 

  15. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukaemia. Blood 2001; 97: 89–94.

    CAS  Google Scholar 

  16. Zwaan ChM, Meshinchi S, Radich JP, Veerman AJ, Huismans DR, Munske L et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia (AML): prognostic significance and relation to cellular drug resistance. Blood 2003; 102: 2387–2394.

    CAS  Google Scholar 

  17. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    CAS  Google Scholar 

  18. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    CAS  Google Scholar 

  19. Stirewalt DL, Meshinchi S, Kussick SJ, Sheets KM, Pogosova-Agadjanyan E, Willman CL et al. Novel FLT3 point mutations within exon 14 found in patients with acute myeloid leukemia. Br J Haematol 2004; 124: 481–484.

    CAS  Google Scholar 

  20. Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K et al. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006; 107: 3700–3707.

    CAS  Google Scholar 

  21. Schittenhelm MM, Yee KWH, Tyner JW, McGreevey L, Haley AD, Town A et al. FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of biochemical properties and sensitivity to sunitinib (SU11248). Leukemia 2006; 20: 2008–2014.

    CAS  Google Scholar 

  22. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007; 12: 501–513.

    Google Scholar 

  23. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    CAS  Google Scholar 

  24. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12: 367–380.

    CAS  Google Scholar 

  25. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T et al. AML-associated Flt3 kinase domain mutations show transduction differences compared with Flt3 ITD mutations. Blood 2005; 106: 265–273.

    CAS  Google Scholar 

  26. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    CAS  Google Scholar 

  27. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    CAS  Google Scholar 

  28. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia: Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452.

    CAS  Google Scholar 

  29. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4325–4335.

    Google Scholar 

  30. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE . FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007; 110: 1262–1270.

    CAS  Google Scholar 

  31. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 2003; 102: 2198–2204.

    CAS  Google Scholar 

  32. Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 2005; 106: 2113–2119.

    CAS  Google Scholar 

  33. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    CAS  Google Scholar 

  34. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005; 19: 1345–1349.

    CAS  Google Scholar 

  35. Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G . BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 2006; 24: 790–797.

    CAS  Google Scholar 

  36. Gale RE, Hills R, Kottaridis PD, Srirangan S, Wheatley K, Burnett AK et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 2005; 106: 3658–3665.

    CAS  Google Scholar 

  37. Mathews V, Thomas M, Srivastava VM, George B, Srivastava A, Chandy M . Impact of FLT3 mutations and secondary cytogenetic changes on the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with a single agent arsenic trioxide regimen. Haematologica 2007; 92: 994–995.

    CAS  Google Scholar 

  38. Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res 2005; 65: 9152–9154.

    CAS  Google Scholar 

  39. Griffiths M, Mason J, Rindl M, Akiki S, McMullan D, Stinton V et al. Acquired isodisomy for chromosome 13 is common in AML, and associated with FLT3-itd mutations (letter). Leukemia 2005; 19: 2355–2358.

    CAS  Google Scholar 

  40. Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agagjanyan EL, Linsley J et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006; 107: 3724–3726.

    CAS  Google Scholar 

  41. Kusec R, Jaksic O, Ostojic S, Kardum-Skelin I, Vrhovac R, Jaksic B . More on prognostic significance of FLT3/ITD size in acute myeloid leukemia (AML). Blood 2006; 108: 405–406.

    CAS  Google Scholar 

  42. Ponziani V, Gianfaldoni G, Mannelli F, Leoni F, Ciolli S, Guglielmelli P et al. The size of duplication does not add to the prognostic significance of FLT3 internal tandem duplication in acute myeloid leukemia patients. Leukemia 2006; 20: 2074–2076.

    CAS  Google Scholar 

  43. Radmacher MD, Marcucci G, Ruppert AS, Mrozek K, Whitman SP, Vardiman JW et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 2006; 108: 1677–1683.

    CAS  Google Scholar 

  44. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    CAS  Google Scholar 

  45. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 2002; 16: 2185–2189.

    CAS  Google Scholar 

  46. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    CAS  Google Scholar 

  47. Shih LY, Huang CF, Wu JH, Wang PN, Lin TL, Dunn P et al. Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin Cancer Res 2004; 10: 1326–1332.

    CAS  Google Scholar 

  48. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    CAS  Google Scholar 

  49. Reilly JT . Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev 2003; 17: 241–248.

    Google Scholar 

  50. Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R . Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 2005; 23: 16–43.

    CAS  Google Scholar 

  51. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D et al. C-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999; 105: 894–900.

    CAS  Google Scholar 

  52. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  Google Scholar 

  53. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003; 121: 775–777.

    CAS  Google Scholar 

  54. Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K . KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. Blood 2005; 105: 3319–3321.

    CAS  Google Scholar 

  55. Ning ZQ, Li J, McGuiness M, Arceci RJ . STAT3 activation is required for Asp(816) mutant c-KIT induced tumorigenicity. Oncogene 2001; 20: 4528–4536.

    CAS  Google Scholar 

  56. Chian R, Young S, Danilkovitch-Miagkova A, Ronnstrand L, Leonard E, Ferrao P et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood 2001; 98: 1365–1373.

    CAS  Google Scholar 

  57. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 2004; 89: 920–925.

    CAS  Google Scholar 

  58. Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006; 107: 1791–1799.

    CAS  Google Scholar 

  59. Goemans BF, Zwaan ChM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536–1542.

    CAS  Google Scholar 

  60. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006; 20: 965–970.

    CAS  Google Scholar 

  61. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006; 107: 3463–3468.

    CAS  Google Scholar 

  62. Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006; 107: 1806–1809.

    CAS  Google Scholar 

  63. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006; 24: 3904–3911.

    CAS  Google Scholar 

  64. Corbacioglu S, Kilic M, Westhoff MA, Reinhardt D, Fulda S, Debatin KM . Newly identified c-kit receptor tyrosine kinase ITD in childhood AML induces ligand independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 2006; 108: 3504–3513.

    CAS  Google Scholar 

  65. Mitin N, Rossman KL, Der CJ . Signaling interplay in Ras superfamily function. Curr Biol 2005; 15: R563–R574.

    CAS  Google Scholar 

  66. Ayllon V, Rebollo A . Ras-induced cellular events (review). Mol Membr Biol 2000; 17: 65–73.

    CAS  Google Scholar 

  67. Beaupre DM, Kurzrock R . RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999; 17: 1071–1079.

    CAS  Google Scholar 

  68. Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 2005; 106: 2113–2119.

    CAS  Google Scholar 

  69. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S . Implications of NRAS mutations in AML: a study of 2502 patients. Blood 2006; 107: 3847–3853.

    CAS  Google Scholar 

  70. Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 466–475.

    CAS  Google Scholar 

  71. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J . Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005; 19: 2232–2240.

    CAS  Google Scholar 

  72. Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 1994; 83: 1603–1611.

    CAS  Google Scholar 

  73. Ritter M, Kim TD, Lisske P, Thiede C, Schaich M, Neubauer A . Prognostic significance of N-RAS and K-RAS mutations in 232 patients with acute myeloid leukemia. Haematologica 2004; 89: 1397–1399.

    CAS  Google Scholar 

  74. Radich JP, Kopecky KJ, Willman CL, Weick J, Head D, Appelbaum F et al. N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 1990; 76: 801–807.

    CAS  Google Scholar 

  75. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  Google Scholar 

  76. Tartaglia M, Niemeyer CM, Shannon KM, Loh ML . SHP-2 and myeloid malignancies. Curr Opin Hematol 2004; 11: 44–50.

    CAS  Google Scholar 

  77. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. Mutations in PTPN11, encoding the protein SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–468.

    CAS  Google Scholar 

  78. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103: 2325–2331.

    CAS  Google Scholar 

  79. Tartaglia M, Martinelli S, Iavarone I, Cazzaniga G, Spinelli M, Giarin E et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol 2005; 129: 333–339.

    CAS  Google Scholar 

  80. Goemans BF, Zwaan CM, Martinelli S, Harrell P, de Lange D, Carta C et al. Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia. Br J Haematol 2005; 130: 795–805.

    Google Scholar 

  81. Loh ML, Reynolds MG, Vattikuti S, Gerbing RB, Alonzo TA, Carlson E, et al., Children's Cancer Group. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia 2004; 18: 1831–1834.

    CAS  Google Scholar 

  82. Johan MF, Bowen DT, Frew ME, Goodeve AC, Wilson GA, Peake IR et al. Mutations in PTPN11 are uncommon in adult myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2004; 124: 843–844.

    CAS  Google Scholar 

  83. Nomdedéu J, Carricondo MT, Lasa A, Perea G, Aventin A, Sierra J . Low frequency of exon 3 PTPN11 mutations in adult de novo acute myeloid leukemia. Analysis of a consecutive series of 173 patients. Haematologica 2005; 90: 412–413.

    Google Scholar 

  84. Watkins F, Fidler C, Boultwood J, Wainscoat JS . Mutations in PTPN11 are rare in adult myelodysplastic syndromes and acute myeloid leukemia. Am J Hematol 2004; 76: 417.

    Google Scholar 

  85. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285: 1–24.

    CAS  Google Scholar 

  86. Verma A, Kambhampati S, Parmar S, Platanias LC . Jak family of kinases in cancer. Cancer Metastasis Rev 2003; 22: 423–434.

    CAS  Google Scholar 

  87. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature 2005; 434: 1144–1148.

    CAS  Google Scholar 

  88. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    CAS  Google Scholar 

  89. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    CAS  Google Scholar 

  90. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    CAS  Google Scholar 

  91. Fröhling S, Lipka DB, Kayser S, Scholl C, Schlenk RF, Dohner H et al. Rare occurrence of the JAK2 V617F mutation in AML subtypes M5, M6, and M7. Blood 2006; 107: 1242–1243.

    Google Scholar 

  92. Levine RL, Loriaux M, Huntly BJ, Loh ML, Beran M, Stoffregen E et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005; 106: 3377–3379.

    CAS  Google Scholar 

  93. Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20: 971–978.

    CAS  Google Scholar 

  94. Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 2006; 25: 1434–1436.

    CAS  Google Scholar 

  95. Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005; 106: 3370–3373.

    CAS  Google Scholar 

  96. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    CAS  Google Scholar 

  97. Illmer T, Schaich M, Ehninger G, Thiede C, DSIL2003 AML Study Groupss. Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. Haematologica 2007; 92: 137–138.

    Google Scholar 

  98. Schnittger S, Bacher U, Kern W, Haferlach C, Haferlach T . JAK2 seems to be a typical cooperating mutation in therapy-related t(8;21)/ AML1-ETO-positive AML. Leukemia 2007; 21: 183–184.

    CAS  Google Scholar 

  99. Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Frohling S et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006; 108: 2770–2779.

    CAS  Google Scholar 

  100. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    CAS  Google Scholar 

  101. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Google Scholar 

  102. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 2007; 110: 1022–1024.

    CAS  Google Scholar 

  103. Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 2007; 110: 1004–1012.

    CAS  Google Scholar 

  104. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–10434.

    CAS  Google Scholar 

  105. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y . AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 1994; 23: 425–432.

    CAS  Google Scholar 

  106. Speck NA, Stacy T, Wang Q, North T, Gu TL, Miller J et al. Core-binding factor: a central player in hematopoiesis and leukemia. Cancer Res 1999; 59: 1789s–1793s.

    CAS  Google Scholar 

  107. Pozner A, Lotem J, Xiao C, Goldenberg D, Brenner O, Negreanu V et al. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis. BMC Dev Biol 2007; 7: 84.

    Google Scholar 

  108. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 1993; 90: 6859–6863.

    CAS  Google Scholar 

  109. Downing JR . AML1/CBFbeta transcription complex: its role in normal hematopoiesis and leukemia. Leukemia 2001; 15: 664–665.

    CAS  Google Scholar 

  110. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87: 697–708.

    CAS  Google Scholar 

  111. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res 1995; 23: 2762–2769.

    CAS  Google Scholar 

  112. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Yazaki Y et al. An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. Leukemia 1997; 11 (Suppl 3): 299–302.

    Google Scholar 

  113. Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T . Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 2007; 4: e172.

    Google Scholar 

  114. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J 1995; 14: 341–350.

    CAS  Google Scholar 

  115. Lutterbach B, Hiebert SW . Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 2000; 245: 223–235.

    CAS  Google Scholar 

  116. Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 1996; 93: 11895–11900.

    CAS  Google Scholar 

  117. Uchida H, Zhang J, Nimer SD . AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 1997; 158: 2251–2258.

    CAS  Google Scholar 

  118. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hemapoiesis. Proc Natl Acad Sci USA 1996; 93: 3444–3449.

    CAS  Google Scholar 

  119. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci USA 1996; 93: 12359–12363.

    CAS  Google Scholar 

  120. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    CAS  Google Scholar 

  121. Okuda T, Takeda K, Fujita Y, Nishimura M, Yagyu S, Yoshida M et al. Biological characteristics of the leukemia-associated transcriptional factor AML1 disclosed by hematopoietic rescue of AML1-deficient embryonic stem cells by using a knock-in strategy. Mol Cell Biol 2000; 20: 319–328.

    CAS  Google Scholar 

  122. Nucifora G, Rowley JD . AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 1995; 86: 1–14.

    CAS  Google Scholar 

  123. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P et al. A High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86: 4263–4269.

    CAS  Google Scholar 

  124. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  Google Scholar 

  125. Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 2862–2869.

    CAS  Google Scholar 

  126. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 2000; 96: 3154–3160.

    CAS  Google Scholar 

  127. Steer EJ, Goldman JM, Cross NC . Mutations of the transcription factor AML1/CBFA2 are uncommon in blastic transformation of chronic myeloid leukaemia. Leukemia 2001; 15: 476–477.

    CAS  Google Scholar 

  128. Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC . Mutations of the AML1 gene in acute myeloid leukaemia of FAB types M0 and M7. Genes Chromosomes Cancer 2002; 34: 24–32.

    CAS  Google Scholar 

  129. Yeoh A, Williams K, Behm F, Lenny N, Shih L, Harada Y et al. Somatic mutations of the AML1 gene are frequent in acute myeloid leukemia with FAB M0 morphology. Blood 2000; 96: 91a (abstract 389).

    Google Scholar 

  130. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    CAS  Google Scholar 

  131. Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000; 13: 423–431.

    CAS  Google Scholar 

  132. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T . High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004; 103: 2316–2324.

    CAS  Google Scholar 

  133. Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, Preudhomme C . New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia 2003; 17: 9–16.

    CAS  Google Scholar 

  134. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S . Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood 2007; 110: 1308–1316.

    CAS  Google Scholar 

  135. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519.

    CAS  Google Scholar 

  136. Tenen DG . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    CAS  Google Scholar 

  137. Nerlov C . C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 2004; 4: 394–400.

    CAS  Google Scholar 

  138. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG . CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314.

    CAS  Google Scholar 

  139. Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR et al. c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol 2001; 21: 3789–3806.

    CAS  Google Scholar 

  140. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG . PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 1996; 88: 1234–1247.

    CAS  Google Scholar 

  141. D'Alo F, Johansen LM, Nelson EA, Radomska HS, Evans EK, Zhang P et al. The amino terminal and E2F interaction domains are critical for C/EBP alpha-mediated induction of granulopoietic development of hematopoietic cells. Blood 2003; 102: 3163–3171.

    CAS  Google Scholar 

  142. Wang QF, Cleaves R, Kummalue T, Nerlov C, Friedman AD . Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis. Oncogene 2003; 22: 2548–2557.

    CAS  Google Scholar 

  143. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ . CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 1996; 10: 804–815.

    CAS  Google Scholar 

  144. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94: 569–574.

    CAS  Google Scholar 

  145. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    CAS  Google Scholar 

  146. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    CAS  Google Scholar 

  147. Radomska HS, Bassères DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    CAS  Google Scholar 

  148. Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 2005; 106: 1369–1375.

    CAS  Google Scholar 

  149. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA 2004; 101: 13312–13317.

    CAS  Google Scholar 

  150. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    CAS  Google Scholar 

  151. Wouters BJ, Jordà MA, Keeshan K, Louwers I, Erpelinck-Verschueren CA, Tielemans D et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood 2007; 110: 3706–3714.

    CAS  Google Scholar 

  152. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58.

    CAS  Google Scholar 

  153. Leroy H, Roumier C, Huyghe P, Biggio V, Fenaux P, Preudhomme C . CEBPA point mutations in hematological malignancies. Leukemia 2005; 19: 329–334.

    CAS  Google Scholar 

  154. Snaddon J, Smith ML, Neat M, Cambal-Parrales M, Dixon-McIver A, Arch R et al. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 2003; 37: 72–78.

    CAS  Google Scholar 

  155. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 2003; 4: 31–40.

    Google Scholar 

  156. Kaeferstein A, Krug U, Tiesmeier J, Aivado M, Faulhaber M, Stadler M et al. The emergence of a C/EBPalpha mutation in the clonal evolution of MDS towards secondary AML. Leukemia 2003; 17: 343–349.

    CAS  Google Scholar 

  157. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, et al., ALFA Group. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    CAS  Google Scholar 

  158. Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002; 99: 1332–1340.

    CAS  Google Scholar 

  159. Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al. Mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633.

    Google Scholar 

  160. Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res 2005; 11: 1372–1379.

    CAS  Google Scholar 

  161. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J . Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 2004; 351: 2403–2407.

    CAS  Google Scholar 

  162. Sellick GS, Spendlove HE, Catovsky D, Pritchard-Jones K, Houlston RS . Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia. Leukemia 2005; 19: 1276–1278.

    CAS  Google Scholar 

  163. Nanri T, Uike N, Kawakita T, Iwanaga E, Hoshino K, Mitsuya H et al. A pedigree harbouring a germ-line N-terminal C/EBP mutation and development of acute myeloblastic leukemia with a somatic C-terminal C/EBP mutation. Blood 2006; 108: 543a abstract 1916.

    Google Scholar 

  164. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y et al. Wilms' tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19: 1318–1323.

    CAS  Google Scholar 

  165. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA . The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J 2001; 20: 1897–1909.

    CAS  Google Scholar 

  166. King-Underwood L, Pritchard-Jones K . Wilms' tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 1998; 91: 2961–2968.

    CAS  Google Scholar 

  167. Summers K, Stevens J, Kakkas I, Smith M, Smith LL, Macdougall F et al. Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia 2007; 21: 550–551.

    CAS  Google Scholar 

  168. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    CAS  Google Scholar 

  169. Vegesna V, Takeuchi S, Hofmann WK, Ikezoe T, Tavor S, Krug U et al. C/EBP-beta, C/EBP-delta, PU.1, AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies. Leuk Res 2002; 26: 451–457.

    CAS  Google Scholar 

  170. Lamandin C, Sagot C, Roumier C, Lepelley P, De Botton S, Cosson A et al. Are PU.1 mutations frequent genetic events in acute myeloid leukemia (AML)? Blood 2003; 100: 4680–4681.

    Google Scholar 

  171. Döhner K, Tobis K, Bischof T, Hein S, Schlenk RF, Fröhling S et al. Mutation analysis of the transcription factor PU.1 in younger adults (16–60 years) with acute myeloid leukemia: a study of the AML Study Group Ulm (AMLSG ULM). Blood 2003; 102: 3850.

    Google Scholar 

  172. Borer RA, Lehner CF, Eppenberger HM, Nigg EA . Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989; 56: 379–390.

    CAS  Google Scholar 

  173. Dumbar TS, Gentry GA, Olson MO . Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry 1989; 28: 9495–9501.

    CAS  Google Scholar 

  174. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al. Nucleophosmin/B23 is a target of CDK2/cyclinE in centrosome duplication. Cell 2000; 103: 127–140.

    CAS  Google Scholar 

  175. Bertwistle D, Sugimoto M, Sherr CJ . Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 985–996.

    CAS  Google Scholar 

  176. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529–533.

    CAS  Google Scholar 

  177. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004; 5: 465–475.

    CAS  Google Scholar 

  178. Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. Delocalization and destabilization of the Arf Tumor suppressor by the Leukemia-associated NPM mutant. Cancer Res 2006; 66: 3044–3050.

    CAS  Google Scholar 

  179. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    CAS  Google Scholar 

  180. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996; 87: 882–886.

    CAS  Google Scholar 

  181. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  Google Scholar 

  182. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    CAS  Google Scholar 

  183. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et al. Mutant nucleophosmin predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics—interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Google Scholar 

  184. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin NPM1 in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    CAS  Google Scholar 

  185. Cazzaniga G, Dell'Oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005; 106: 1419–1422.

    CAS  Google Scholar 

  186. Chou WC, Tang JL, Lin LI, Yao M, Tsay W, Chen CY et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res 2006; 66: 3310–3316.

    CAS  Google Scholar 

  187. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005; 106: 2854–2861.

    CAS  Google Scholar 

  188. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005; 106: 899–902.

    CAS  Google Scholar 

  189. Gorello P, Cazzaniga G, Alberti F, Dell'Oro MG, Gottardi E, Specchia G et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2006; 20: 1103–1108.

    CAS  Google Scholar 

  190. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM . Localization of gene for human p53 tumour antigen to band 17p13. Nature 1986; 320: 84–85.

    CAS  Google Scholar 

  191. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    CAS  Google Scholar 

  192. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    CAS  Google Scholar 

  193. Finlay CA, Hinds PW, Levine AJ . The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–1093.

    CAS  Google Scholar 

  194. Havre PA, Yuan J, Hedrick L, Cho KR, Glazer PM . p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res 1995; 55: 4420–4424.

    CAS  Google Scholar 

  195. Bouffler SD, Kemp CJ, Balmain A, Cox R . Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res 1995; 55: 3883–3889.

    CAS  Google Scholar 

  196. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD . Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70: 923–935.

    CAS  Google Scholar 

  197. Gualberto A, Aldape K, Kozakiewicz K, Tlsty TD . An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci USA 1998; 95: 5166–5171.

    CAS  Google Scholar 

  198. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM . Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948.

    CAS  Google Scholar 

  199. Hsu I, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC . Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 1991; 350: 427–428.

    CAS  Google Scholar 

  200. Fenaux P, Jonveaux P, Quiquandon I, Lai JL, Pignon JM, Loucheux-Lefebvre MH et al. P53 gene mutations in acute myeloid leukemia with 17p monosomy. Blood 1991; 78: 1652–1657.

    CAS  Google Scholar 

  201. Slingerland JM, Minden MD, Benchimol S . Mutation of the p53 gene in human acute myelogenous leukemia. Blood 1991; 77: 1500–1507.

    CAS  Google Scholar 

  202. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    CAS  Google Scholar 

  203. Prokocimer M, Unger R, Rennert HS, Rotter V, Rennert G . Pooled analysis of p53 mutations in hematological malignancies. Hum Mutat 1998; 12: 4–18.

    CAS  Google Scholar 

  204. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001; 19: 1405–1413.

    CAS  Google Scholar 

  205. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I et al. p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 1994; 84: 3148–3157.

    CAS  Google Scholar 

  206. Merlat A, Lai JL, Sterkers Y, Demory JL, Bauters F, Preudhomme C et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia with 17p deletion. A report on 25 cases. Leukemia 1999; 13: 250–257.

    CAS  Google Scholar 

  207. Lai JL, Preudhomme C, Zandecki M, Flactif M, Vanrumbeke M, Lepelley P et al. Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia 1995; 9: 370–381.

    CAS  Google Scholar 

  208. Soenen V, Preudhomme C, Roumier C, Daudignon A, Lai JL, Fenaux P . 17p Deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood 1998; 91: 1008–1015.

    CAS  Google Scholar 

  209. Suela J, Alvarez S, Cifuentes F, Largo C, Ferreira BI, Blesa D et al. DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. Leukemia 2007; 21: 1224–1231.

    CAS  Google Scholar 

  210. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003; 112: 1751–1761.

    CAS  Google Scholar 

  211. Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia 2003; 17: 2492–2499.

    CAS  Google Scholar 

  212. Roumier C, Lejeune-Dumoulin S, Renneville A, Goethgeluck AS, Philippe N, Fenaux P et al. Cooperation of activating Ras/rtk signal transduction pathway mutations and inactivating myeloid differentiation gene mutations in M0 AML: a study of 45 patients. Leukemia 2006; 20: 433–436.

    CAS  Google Scholar 

  213. Huntly BJ, Gilliland DG . Cancer biology: summing up cancer stem cells. Nature 2005; 435: 1169–1170.

    CAS  Google Scholar 

  214. Li L, Piloto O, Kim KT, Ye Z, Nguyen HB, Yu X et al. FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells. Br J Haematol 2007; 137: 64–75.

    CAS  Google Scholar 

  215. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    CAS  Google Scholar 

  216. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    CAS  Google Scholar 

  217. Rosenbauer F, Koschmieder S, Steidl U, Tenen DG . Effect of transcription-factor concentrations on leukemic stem cells. Blood 2005; 106: 1519–1524.

    CAS  Google Scholar 

  218. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    CAS  Google Scholar 

  219. Scholl C, Bansal D, Dohner K, Eiwen K, Huntly BJ, Lee BH et al. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 2007; 117: 1037–1048.

    CAS  Google Scholar 

  220. Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M et al. MLL partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 2006; 116: 2707–2716.

    CAS  Google Scholar 

  221. Levis M, Tse KF, Smith BD, Garrett E, Small D . A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood 2001; 98: 885–887.

    CAS  Google Scholar 

  222. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891.

    CAS  Google Scholar 

  223. Wadleigh M, DeAngelo DJ, Griffin JD, Stone RM . After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies. Blood 2005; 105: 22–30.

    CAS  Google Scholar 

  224. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    CAS  Google Scholar 

  225. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    CAS  Google Scholar 

  226. O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–3605.

    CAS  Google Scholar 

  227. O'Farrell AM, Foran JM, Fiedler W, Serve H, Paquette RL, Cooper MA et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–5476.

    CAS  Google Scholar 

  228. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763–2767.

    CAS  Google Scholar 

  229. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM et al. A phase I study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993.

    CAS  Google Scholar 

  230. Nanri T, Matsuno N, Kawakita T, Mitsuya H, Asou N . Imatinib mesylate for refractory acute myeloblastic leukemia harbouring inv(16) and a C-KIT exon 8 mutation. Leukemia 2005; 19: 1673–1675.

    CAS  Google Scholar 

  231. Growney JD, Clark JJ, Adelsperger J, Stone R, Fabbro D, Griffin JD et al. Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. Blood 2005; 106: 721–724.

    CAS  Google Scholar 

  232. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Bohm A et al. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    CAS  Google Scholar 

  233. Beghini A, Bellini M, Magnani I, Colapietro P, Cairoli R, Morra E et al. STI 571 inhibition effect on KITAsn822Lys-mediated signal transduction cascade. Exp Hematol 2005; 33: 682–688.

    CAS  Google Scholar 

  234. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2005; 3: 11–22.

    Google Scholar 

  235. Whitman SP, Liu S, Vukosavljevic T, Rush LJ, Yu L, Liu C et al. The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 2005; 106: 345–352.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Preudhomme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renneville, A., Roumier, C., Biggio, V. et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 22, 915–931 (2008). https://doi.org/10.1038/leu.2008.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.19

Keywords

This article is cited by

Search

Quick links