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Mesenchymal stem cells in obesity: insights for
translational applications
Kenichi Matsushita1 and Victor J Dzau2

Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body
adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has
become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse
side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is
invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major
source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity.
However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a
highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular,
successful clinical application of MSCs will require extensive identification and characterization of the transcriptional
regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important
comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity
is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown
adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based
brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as
epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-
based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their
potential clinical applications for obesity.
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Obesity is a complex medical condition characterized by the
accumulation of excess body fat.1 The rising incidence of
obesity has become a major public health problem
worldwide,2–4 particularly because obesity is a major risk
factor for type 2 diabetes, dyslipidemia, hypertension, stroke,
and cardiovascular disease.2,3 Obesity also increases the risk of
certain types of cancer,5,6 and has a reported association with
some psychiatric disorders.7,8 This robust increase in obesity
and associated health complications has prompted multiple
control strategies including lifestyle modifications, pharma-
cotherapy, and surgical approaches. However, lifestyle
management has limited effects and many anti-obesity drugs
have been withdrawn from market due to adverse side
effects.2 Thus, the most effective therapy for severe obesity is
invasive, bariatric surgery, which has its own inherent risks

and remains contentious with respect to long-term efficacy
and procedural safety.9–12

Severe obesity is ascribed to both an increase in adipose cell
size and increased adipocyte cell number.13–15 Recent
evidence suggests that mesenchymal stem cells (MSCs) are a
major source of adipocyte generation, with both MSCs in fat
tissue and adipocyte progenitor cells originating from bone
marrow implicated in adipogenesis in adult animals.16–19

MSCs are thus purported to play a vital role in obesity, and
have received increasing attention as a new target for therapy.
Since exercise suppresses obesity, Rubin et al20 tested the
hypothesis that low-magnitude mechanical signals would
suppress adiposity, not by metabolizing existing adipose
tissue, but instead by inhibiting the differentiation of MSCs
into adipocytes. The authors demonstrated that 15 weeks of
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brief, daily exposure to high-frequency mechanical signals,
induced at a magnitude well below that which would arise
during walking, suppressed adipogenesis by 27% in C57BL/6 J
mice.20 They further reported that irradiated mice receiving
bone marrow transplants from heterozygous green fluores-
cent protein (GFP)+ mice exhibited a 19% decrease in MSC to
adipocyte differentiation after 6 weeks of the low-magnitude
mechanical signals, indicating that the formation of new
adipose tissue in their models was deterred by inhibiting MSC
adipogenesis.20 The authors thus suggested that obesity
in humans could be prevented by controlling MSC
adipogenesis.20

The underlying pathophysiology of obesity remains ill
defined and studies are ongoing into the potential roles of
MSCs in managing obesity, and into their safety and efficacy
in the clinical setting. This review discusses current under-
standing of the relationship between MSCs and obesity and its
potential clinical implications.

ADIPOGENESIS FROM MSCs
MSCs are multipotent cells that can differentiate into a variety
of cells of the mesodermal lineage including adipocytes,21 and
transdifferentiate into specialized cells of the endodermal and
ectodermal lineages.22 MSCs were also attributed with
immunomodulatory properties that could potentially benefit
patients who exhibit adverse immune responses from graft-
versus-host and autoimmune diseases.23–25 These multipotent
capacities of MSCs and their therapeutic potential has
prompted many clinical and preclinical studies of MSC-
based therapy for various diseases, with encouraging results
reported thus far.26,27

On the other hand, the roles of MSCs in obesity remain ill
defined, and further understanding of the mechanisms,
regulation and outcomes of adipogenesis is crucial for the
development of MSC-based treatments for obesity. Although
adipogenesis is a multistep process involving many cellular
intermediates, for practical purposes it can be divided into
two major phases (Figure 1).28–32 During the determination
phase, multipotent MSCs differentiate into preadipocytes
committed to the adipogenic lineage.28–32 Following deter-
mination, fibroblastic preadipocytes then become spherical
mature adipocytes in the terminal differentiation phase.28–32

As a result, adipocytes can synthesize and transport lipids,
secrete adipocyte-specific proteins, and express the machinery
necessary for insulin sensitivity.28–32

The mechanisms governing MSC adipogenesis are quite
complex, with the major signaling pathways converging to
regulate a range of transcription factors such as peroxisome
proliferator-activated receptor-gamma (PPAR-gamma) and
several members of the CCAAT/enhancer-binding proteins
(C/EBPs) (Figure 1).30–34 PPAR-gamma is a nuclear hormone
receptor and key regulator of adipogenesis,35,36 including
in vitro adipogenesis from embryonic stem (ES) cells and
embryonic fibroblasts.37,38 Specifically, Rosen et al38 created
chimeric mice derived from wild-type ES cells and cells with a

homozygous deletion of PPAR-gamma, and used this
approach to grow normal tissues from a choice of cells with
different genotypes.38 By showing exclusion of PPAR-gamma
null cells from adult adipose tissues, but not several other of
the developed tissues, the authors concluded that PPAR-
gamma is required for adipogenesis in vivo.38

The C/EBPs are transcription factors characterized by a
highly conserved, basic leucine zipper domain at the C
terminus that facilitates homo- or heterodimerization and
DNA binding.35,36,39,40 Six members of the family have been
isolated and characterized thus far.40 Of these, C/EBP-beta
and C/EBP-delta are the first transcription factors induced
during adipogenesis and play a vital role in directing the
differentiation process (Figure 1).39,41 On the other hand,
CEBP-alpha is induced to assume a key role later in the
differentiation process (Figure 1).36 The importance of
C/EBPs in adipogenesis has been demonstrated in gain- and
loss-of-function studies with C/EBP-alpha considered to play
the most prominent role,36,39,41 by operating with PPAR-
gamma in a coordinated manner to stimulate adipogenesis.35

Importantly, PPAR-gamma can promote adipogenesis in
C/EBP-alpha-deficient cells;42 however, C/EBP-alpha does
not function similarly in the absence of PPAR-gamma.43 In

Figure 1 Schematic view of the regulatory mechanisms governing MSC
adipogenesis. Adipogenesis can be practically divided into two major
phases: the determination phase and the terminal differentiation phase.
The former defines the process from multipotent MSCs to preadipocytes,
whereas the latter governs how preadipocytes develop into mature
adipocytes. The mechanisms underlying MSC adipogenesis are quite
complex, with the major signaling pathways converging to regulate a
range of transcription factors such as PPAR-gamma and several members
of the C/EBP family. PPAR-gamma is considered the master regulator of
adipogenesis. C/EBP-beta and C/EBP-delta are recognized to play an
important role during the early stage of adipogenesis, whereas CEBP-
alpha assumes a key role later in the differentiation process. PPAR-
gamma and C/EBP-alpha also operate in a coordinated manner to
stimulate adipogenesis. A number of signaling pathways control MSC
adipogenesis; however, the full scope of transcriptional control and
signaling pathways governing MSC adipogenesis has not been clarified.
BMP, bone morphogenetic protein; C/EBP, CCAAT/enhancer-binding
protein; Deter, determination phase; Hh, Hedgehog; IGF, insulin-like
growth factor; MSCs, mesenchymal stem cells; PPAR, peroxisome
proliferator-activated receptor; TerDif, terminal differentiation phase; TGF,
transforming growth factor.
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addition to PPAR-gamma and C/EBP-alpha, other transcrip-
tion factors interact at various stages of adipocyte differentia-
tion. For example, gene expression profiles using microarray
and quantitative reverse transcription polymerase chain
reaction analyses of mRNAs isolated from adipocyte
differentiation cultures suggested the importance of many
transcriptional proteins and receptors for adipogenesis.39,44,45

In terms of signaling pathways important for adipogenesis,
Wnt/beta-catenin signaling is one of the most important and
well studied.46,47 Activation of Wnt/beta-catenin signaling
inhibits adipogenesis,48–50 whereas blocking endogenous Wnt
signaling promotes adipogenic differentiation,49,51 suggesting
that Wnts act as a brake for adipogenesis. Wnt10b is
suggested to be the most important endogenous regulator of
adipogenesis,49 with transgenic mice overexpressing Wnt10b
from the adipocyte-specific FABP4 promotor (FABP4-
Wnt10b mice) showing reduced adiposity and resistance to
diet-induced obesity.50 In addition, Wright et al52 reported
that expressing Wnt10b in the adipose tissue of ob/ob mice
using a FABP4-Wnt10b transgene reduced adiposity in these
mice. Those authors further demonstrated that Wnt10b
protected against genetic obesity in mice due to ectopic
expression of agouti (Ay).52

Recent evidence suggests that Hedgehog (Hh) signaling
plays an important role in MSC adipogenesis, with activation
of this signaling impairing the differentiation process.53,54

Fontaine et al55 also showed that Hh signaling decreases
during adipocyte differentiation from adipose-derived human
MSCs, and that activation of Hh signaling alters adipocyte
morphology as well as insulin sensitivity, but inhibition of this
signaling was not sufficient to trigger adipogenesis.55 In other
studies, Suh et al54 showed that inhibiting Hh signaling
increased adipogenic differentiation in 3T3-L1 murine
preadipocytes, whereas Cousin et al56 found that decreasing
Hh signaling was not sufficient to trigger adipogenesis in the
same cell type. Thus, while the anti-adipogenic role of Hh
signaling seems to be established, the effect of inhibiting this
signaling on adipogenesis remains controversial.57

The transforming growth factor (TGF)-beta superfamily
exhibits various actions in many cell types including MSCs
and adipocytes, with TGF-beta signaling via the bone
morphogenetic protein (BMP) ligands shown to regulate
adipogenesis.58,59 Ignotz et al60 further showed that TGF-beta
inhibits adipocyte differentiation of 3T3-L1 cells, while Zhou
et al61 demonstrated that cooperative TGF-beta/Wnt signaling
could inhibit adipogenesis in human MSCs. TGF-beta seems
to have an anti-adipogenic effects on MSCs, although the
effects of BMPs on adipogenesis differ among different cell
types and BMP ligands.62 For example, BMP2 inhibited
adipogenesis in the human marrow stromal cell line hMS,63

but promoted adipogenesis in the murine mesenchymal stem
cell line C3H10T1/2.64,65 Further, BMP7 promotes adipogen-
esis in human MSCs66 while BMP4 plays that role in
C3H10T1/2 cells.67 Further studies are needed to determine
the mechanisms by which TGF-beta/BMP signaling affects

adipogenesis and the implication for such findings in different
cell types.

Finally, insulin-like growth factor (IGF) signaling is also
important for adipogenesis. IGF-1 is considered to stimulate
adipogenesis,68 and Holzenberger et al69 demonstrated a
strong growth deficit in the fat tissue of mice generated to
have very low IGF-1 receptor levels. However, the precise
roles and mechanisms of IGF signaling in MSC adipogenesis
are still unclear.

The full scope of transcriptional control and signaling
pathways governing MSC adipogenesis has not been well
defined, and the realization of MSC-based therapeutic
strategies for obesity relies on ongoing and future studies to
further elucidate these mechanisms.

MSCs AND THE COMORBIDITIES OF OBESITY
Obesity is associated with multiple comorbidities. One of the
strongest associations is with type 2 diabetes,70,71 suggesting
an important link between this prevalent disease and MSC
adipogenesis. While such a link raises the potential of
controlling MSC adipogenesis for new disease prevention
strategies, there is still much to be learned before we fully
understand the role of MSCs in development of type 2
diabetes. Besides the control of adipogenesis, several studies
have examined the potential roles of MSCs in treating
diabetes (Table 1). For example, MSCs can differentiate into
insulin-producing cells, suggesting MSCs as a source of
transplantation material in the treatment of diabetes,72–74

while other studies demonstrated the angiogenic and
anti-inflammatory potential of MSCs in supporting islet
transplantation.75,76 Furthermore, Dave et al77 reported a
clinical trial showing that co-infusion of in vitro-generated
insulin-producing cells differentiated from autologous
adipose-derived MSCs and bone marrow-derived hemato-
poietic stem cells into the portal circulation, thymus, and

Table 1 Example studies of the relationship between MSC and
obesity comorbidities

Comorbidity Findings References

DM MSC as a source of transplantation material 72–74

MSC supports islet transplantation 75,76

MSC treatment improves HbA1c 77

DL MSC infusion improves DL 78

LXR-alpha inhibits MSC adipogenesis 90

HTN Pts with HTN exhibit increased circulating MSCs 95

Ang II inhibits MSC adipogenesis 98

AT2R inhibits MSC adipogenesis 98,100

Abbreviations: Ang II, angiotensin II; AT2R, angiotensin AT2 receptor; DL, dysli-
pidemia; DM, diabetes mellitus; HbA1c, glycosylated hemoglobin; HTN, hyper-
tension; LXR, liver X receptor; MSC, mesenchymal stem cell; Pts, patients.
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subcutaneous tissue increased serum C-peptide levels and
improved glycosylated hemoglobin levels. Significant progress
has thus been made in the field of MSC and diabetes, and
further research is warranted to realize the clinical potential of
MSC adipogenesis in this area.

Dyslipidemia is also a comorbidity of obesity, and while a
recent infusion of adipose-derived MSCs improved dyslipi-
demia in obese mice (Table 1),78 the relationship between
MSCs and dyslipidemia remains largely unknown. Regarding
cholesterol/lipid homeostasis, liver X receptor (LXR)-alpha
deserves special consideration. LXR-alpha is an oxysterol-
regulated nuclear hormone receptor with a central role in
cholesterol and lipid homeostasis.79–84 Importantly,
Gao et al85 reported that the chronic activation of LXR by
its agonist blocked the development of high-fat diet-induced
obesity in mice, suggesting LXR as a potential target for
obesity prevention. Accumulating evidence also suggests a
direct role for LXR-alpha in adipose tissue, with increased
expression of LXR-alpha demonstrated during adipogenesis
and high expression levels of LXR-alpha and many LXR-alpha
target genes found in adipocytes.45,86–89 Although the precise
relationship between LXR-alpha and MSC biology remains
undefined, we recently reported the role of LXR-alpha in
MSC adipogenesis using murine MSCs isolated from the bone
marrow of wild type (WT) and LXR-null mice, as well as cell
lines stably overexpressing GFP-LXR-alpha or GFP alone,
generated from WT murine MSCs by retroviral infection.90

Deletion of LXR accelerated adipogenesis in murine MSCs, as
determined by lipid droplet accumulation and adipogenesis-
related gene expression, while overexpression of LXR-alpha
inhibited adipogenesis.90 Because Wnt/beta-catenin signaling
is crucial for suppressing adipogenesis, we further examined
the effects of deleting LXR or overexpressing LXR-alpha on
Wnt expression and cellular beta-catenin levels in the murine
MSCs. We found a decrease in both pathway markers in the
absence of LXR and an increase in the cells overexpressing
LXR-alpha.90 Our data thus showed that LXR-alpha has an
inhibitory effect on adipogenesis of murine MSCs with Wnt/
beta-catenin signaling (Table 1),90 although the clinical
relevance of this suppressive effect remains to be explored.
Interestingly, Beaven et al91 reported increased total body
adiposity in LXR-null mice bred onto a leptin-deficient ob/ob
background compared with that in WT ob/ob mice. On the
other hand, Kalaany et al92 reported that LXR-null mice were
resistant to diet-induced obesity due to increased energy
expenditure. Adipose tissue-specific LXR-null mice have not
yet been generated, and hence, the precise roles of LXR in
adipose tissue in vivo remain unknown. Further studies are
necessary to elucidate the roles of LXR in adipogenesis and
clinical obesity.

Another important comorbidity of obesity is
hypertension.93,94 Marketou et al95 reported increased numbers
of circulating MSCs in patients with hypertension compared
to normotensive patients (Table 1); however, little is known
about the relationship between MSC and obesity-associated

hypertension. In this context, the renin–angiotensin system
(RAS) is of note. The RAS is an endocrine system and
considered central in the development of hypertension.96 In
addition to the circulating RAS, the importance of local RAS at
the tissue level is recognized.96,97 Previously, we demonstrated
that human bone marrow-derived MSCs contain a local RAS
and that endogenous angiotensin II (Ang II) production is
increased in human MSCs undergoing adipogenic differentia-
tion through increased local renin expression.98 We also
showed that Ang II inhibits adipogenesis of human MSCs
associated with an increase in angiotensin AT2 receptors,

98 and
that pharmacological blockade of these receptors promotes
adipogenesis (Table 1)98 while inhibiting the osteogenesis of
human MSCs.99 Recently, we further characterized how the
AT2 receptor (AT2R) affects the differentiation of MSCs to
adipocytes using a genetic model.100 Murine MSCs were
isolated from the bone marrow of AT2R-null mice and wild-
type littermates. Compared with MSCs isolated from littermate
mice, MSCs from AT2R-null mice exhibited significantly
increased adipogenesis, as determined by lipid droplet
accumulation and adipogenesis-related gene expression.100

The AT2R-null group also showed significantly decreased
Wnt10b expression accompanied by decreased beta-catenin
levels (vs littermate).100 Our results thus revealed that AT2R
inhibits adipogenic differentiation in murine MSCs via
Wnt10b/beta-catenin signaling (Table 1).100 These findings
suggest an association between MSC adipogenesis and
hypertension, based on the central role that the RAS plays in
the pathophysiology of hypertension, although such a
relationship seems to be quite complex. We also reported that
murine MSCs could develop into renin-producing granular
cells under the activation of LXR-alpha.101 However, because
renin is the first enzymatic and rate-limiting step of the RAS,
and LXR-alpha is considered central to the pathophysiology of
dyslipidemia, the link between RAS and LXR-alpha in
MSCs102 further complicates the relationship between MSC
adipogenesis and the comorbidities of obesity. Further
concentrated research on the relationship between MSC
adipogenesis and the comorbidities of obesity is needed to
evaluate the potential of effective and safe MSC-based therapies
for obesity.

EPIGENETICS IN THE RELATIONSHIP BETWEEN MSC
ADIPOGENESIS AND OBESITY
There has been increasing interest in the role epigenetics plays
in obesity development.3,103 Epigenetic mechanisms affect
gene function without modifying the DNA sequence.103 In
addition to the classical epigenetic mechanisms including
DNA methylation and histone modification, microRNAs
(miRNAs) comprising species of short noncoding RNA that
regulate gene expression post-transcriptionally, have emerged
as important epigenetic players.104 For example, Chen et al105

reported that the level of miR-146b increased during
adipogenesis from human MSCs to mature adipocytes, and
further showed the adipogenesis promotion by gain- and loss-
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of-function studies. In addition, Ahn et al106 demonstrated
that in vivo knockdown of miR-146b by a locked nucleic acid
miR-146b antagomir significantly reduced fat volume and
body weight in obese mice. These data suggest that miR-146b
could be a potential target for treating obesity. Li et al107 also
showed the promotion of adipogenesis by miR-17-5p and
miR-106a in human adipose-derived MSCs by gain- and loss-
of-function studies, while Shi et al108 suggested miR-148a as a
potential biomarker of obesity, by showing increased levels of
this miRNA in adipose tissue of obese people and mice fed a
high-fat diet. Gain- and loss-of-function studies by the latter
group also showed that miR-148a accelerated adipogenesis in
human adipose-derived MSCs, and that this miRNA acted by
suppressing its target gene, Wnt1, suggesting miR-148a
promotes MSC adipogenesis through the repression of Wnt1
signaling.108 The same group recently reported miRNA
microarray data showing differential expression in mature
adipocytes compared with human adipose-derived MSCs that
suggested potential therapeutic targets for controlling
obesity.109

Regarding the classical epigenetic mechanisms, Noer
et al110 examined the DNA methylation status of adipogenic
and non-adipogenic genes in human adipose-derived MSCs,
and found that the adipogenic gene promotors were
hypomethylated in MSCs, whereas non-adipogenic promo-
tors were methylated. However, DNA methylation reflected
neither transcriptional status nor potential for gene expres-
sion upon differentiation, suggesting that DNA methylation
might not be the sole determinant of adipogenic potential and
could constitute a molecular signature of MSCs.110 On the
other hand, Zhao et al111 investigated whether DNA
methylation and histone acetylation at the C/EBP-alpha
promoter are involved in MSC adipogenesis using bone
marrow-derived MSCs from the glucocorticoid-induced
osteoporosis (GIO) mouse model, in which adipogenic
potential exceeds osteogenic potential. These authors
observed DNA hypomethylation, high PPAR-gamma binding,
low histone deacetylase binding, and histone hyperacetylation
in the − 1286 bp/− 1065 bp region of the C/EBP-alpha
promoter in MSCs from GIO mice compared with normal
mice, suggesting DNA methylation and histone acetylation
status on the C/EBP-alpha promoter as markers of adipogenic
potential in MSCs.111 Furthermore, Hemming et al112

demonstrated the vital role of histone methylation and
demethylation by Enhancer of Zeste homology 2 and lysine
demethylase 6A in adipogenesis of human bone marrow-
derived MSCs using overexpression, siRNA knockdown, and
enzymatic inhibition.

Epigenetics is a rapidly evolving area of research, and there
is still much to be learned before we fully understand the
epigenetic mechanisms at play in MSC adipogenesis and
obesity.113 Further studies are expected to open possibilities
for a new level of therapeutic options for obesity.

COMPLEXITY OF MSC ADIPOGENESIS AS A POTENTIAL
THERAPEUTIC TARGET FOR OBESITY
Obesity is a medical condition involving the excess accumula-
tion of adipose tissue; however, simply inhibiting adipogen-
esis is not a practical strategy to manage obesity. Imbalance
between energy intake and expenditure must also be
acknowledged. Producing new adipocytes might prevent the
increase in large insulin-resistant adipocytes. Therefore,
requisite adipogenesis exists. On the other hand, Rieusset
et al114 reported that decreasing PPAR-gamma activity, either
by treatment with a PPAR-gamma-specific antagonist or by
invalidation of one allele of the PPAR-gamma gene, protected
mice from high-fat diet-induced adipocyte hypertrophy and
insulin resistance. It is thus possible that decreased PPAR-
gamma expression in adipose tissue improves insulin sensit-
ivity, as demonstrated in PPAR-gamma-deficient mice115,116

or by using a PPAR-gamma-specific antagonist.114 Never-
theless, it remains contentious as to the effects of PPAR-
gamma activity, its agonist, and its antagonist on insulin
sensitivity.114–118 Balanced adipogenesis based on energy
intake and expenditure seems to be important.

A relationship between MSCs and ectopic lipid accumula-
tion in insulin-responsive tissues is another complicated issue.
For example, skeletal muscle is considered the main
destination for insulin-stimulated glucose disposal.119,120 To
this end, Jacob et al121 showed that intramyocellular lipid
content was increased in insulin-resistant offspring of type 2
diabetic subjects compared with insulin-sensitive control
subjects and suggested that increased intramyocellular lipid
accumulation might contribute to the defective glucose
uptake in the skeletal muscle of insulin-resistant subjects. In
addition, ectopic lipid accumulation in liver is also associated
with insulin resistance,122–124 and ectopic lipid accumulation
in pancreas could contribute to beta-cell dysfunction and a
negative association between pancreatic fat and insulin
secretion.125–127 MSC adipogenesis in adipose tissue could
have a role in decreasing ectopic lipid accumulation; however,
MSCs also exist in skeletal muscle, liver, and pancreas, and
MSC adipogenesis in such tissues further complicates this
context.128–131 Uezumi et al132 identified mesenchymal
progenitors in the muscle interstitium and demonstrated that
only these cells among the muscle-derived cell populations
exhibited efficient adipogenic differentiation both in vitro and
in vivo, suggesting that these cells are responsible for ectopic
fat cell formation in skeletal muscle. Although the
relationship between MSCs and ectopic lipid accumulation
remains largely unknown, this link is an area deserving more
research.

Finally, brown and white adipocytes are also complicated
though important topics (Figure 2). Adipose tissue is
traditionally classified as either white adipose tissue (WAT)
or brown adipose tissue (BAT).133 WAT functions to store
excess energy, whereas BAT is involved in thermogenesis and
energy expenditure.133 Because of this unique thermogenic
capacity of BAT resulting from the expression of uncoupling
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protein 1 in the mitochondrial inner membrane,134 BAT
activation-regeneration in animal models were studied and
reported to improve obesity and insulin resistance.135–139

More importantly, recent studies suggest that another type of
brown adipocytes, called beige or bright adipocytes, with
similar functions to those of brown adipocytes could be
recruited in WAT upon environmental stimulation and/or
pharmacologic treatment (Figure 2).134,140 Among these,
García-Alonso et al141,142 reported prostaglandin E2 as a key
regulator of white-to-brown adipogenesis, while Schulz
et al143 showed that Sca-1+ adipogenic progenitor cells from
murine subcutaneous white fat were highly inducible to
differentiate into brown-like adipocytes upon stimulation
with BMP7. In addition, Rosenwald et al144 demonstrated that
cold-induced bright or beige adipocytes in mice were reversed
into white adipocytes on warm adaptation and that those
white adipocytes converted into bright adipocytes on addi-
tional cold stimulation. Reversible transdifferentiation
between white and beige adipocytes, and between white and
brown adipocytes are suggested.144–146 On the other hand,
Wang et al147 reported that cold exposure induced beige
adipocytes as de novo adipogenesis in subcutaneous fat from
mice. Taken together, these data indicate that beige
adipogenesis combining MSCs in WAT is a promising
research area of fat biology expected to identify new
therapeutic strategies for obesity.

FUTURE DIRECTIONS AND CONCLUSION
In terms of future research, identification and thorough
characterization of the transcriptional regulators that control
MSC adipogenesis is a vital first step. To this end, current and
future genome-wide studies are promising tools that could
help to answer many of the remaining questions. Second,
understanding how the epigenetics of MSC adipogenesis plays
a role in obesity needs to progress. Epigenetics is a rapidly
evolving area of research with recent miRNA expression
profiling studies during MSC adipogenesis revealing several
miRNAs with a specific expression pattern. The challenge for
future studies is the gain key insights into the epigenetic
regulatory mechanisms governing MSC adipogenesis with the
potential to provide novel therapeutic targets. Third, the
effects of MSC therapies on the comorbidities of obesity must
be further studied. The relationship between MSC adipogen-
esis and such comorbidities remains obscure, and an in-depth
understanding is necessary to properly evaluate the potential
of effective and safe MSC-based therapeutic strategies for
obesity. Finally, future research into the molecular control of
brown or beige adipogenesis could lead to a novel break-
through. Interventions such as controlling brown adipogen-
esis from MSCs and/or white-to-brown adipogenesis could
form the basis of future therapeutic strategies. Importantly,
obesity is a heterogeneous group of conditions with multiple
causes including genetic and environmental factors. Identifi-
cation and characterization of different obese phenotypes in
further research including emerging fields such as epigenetics
are important in the quest for individualized therapeutic
strategies for patients with obesity. In the future, it is possible
that MSCs may be used to control adipogenesis and/or the
comorbidities of obesity individually as an anti-obesity
treatment in clinical practice.

In conclusion, MSCs are a promising therapeutic option
for obesity in the future and further studies will hopefully
elucidate the mechanisms at play in the relationship between
MSC adipogenesis and obesity, leading ultimately to novel
MSC-based therapeutic options for patients.
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