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Tissue image analysis (tIA) is emerging as a powerful tool for quantifying biomarker expression and distribution in
complex diseases and tissues. Pancreatic ductal adenocarcinoma (PDAC) develops in a highly complex and heterogeneous
tissue environment and, generally, has a very poor prognosis. Early detection of PDAC is confounded by limited
knowledge of the pre-neoplastic disease stages and limited methods to quantitatively assess disease heterogeneity. We
sought to develop a tIA approach to assess the most common PDAC precursor lesions, pancreatic intraepithelial neoplasia
(PanIN), in tissues from KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre (KPC) mice, a validated model of PDAC development. tIA
profiling of training regions of PanIN and tumor microenvironment (TME) cells was utilized to guide identification of
PanIN/TME tissue compartment stratification criteria. A custom CellMap algorithm implementing these criteria was applied
to whole-slide images of KPC mice pancreata sections to quantify p53 and Ki-67 biomarker staining in each tissue
compartment as a proof-of-concept for the algorithm platform. The algorithm robustly identified a higher percentage of
p53-positive cells in PanIN lesions relative to the TME, whereas no difference was observed for Ki-67. Ki-67 expression was
also quantified in a human pancreatic tissue sample available to demonstrate the translatability of the CellMap algorithm
to human samples. Together, our data demonstrated the utility of CellMap to enable objective and quantitative
assessments, across entire tissue sections, of PDAC precursor lesions in preclinical and clinical models of this disease to
support efforts leading to novel insights into disease progression, diagnostic markers, and potential therapeutic targets.
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Tissue image analysis (tIA) is emerging as a robust and
powerful tool for objectively assessing stained tissue sections
through sophisticated object recognition schemes and stain-
ing quantitation.1–4 Pathologist-guided tIA uniquely enables
quantification of tissue features across an entire tissue section,
something that is not feasible with manual evaluation, and
can be implemented in discovery-, preclinical, and clinical-
stage environments.5 Furthermore, tIA captures numerous
parameters, which characterize the morphometric, distribu-
tion, and biomarker staining features of each cell in
significant detail—parameters that can be evaluated to
develop novel insights into disease. Diseases that exist in
complex tissue environments, those that require quantitative
associations between multiple biomarkers to understand

disease mechanisms, and those with molecular and morpho-
metric heterogeneity pose significant challenges for manual
examination and scoring of tissue. In these instances, the
complexity and heterogeneity of the tissue environment can
be characterized in great detail by tIA-based methods using
unbiased objective tissue scoring solutions developed to
complement existing approaches.6,7

Pancreatic cancer is one such disease where tIA-based
methods have the potential to complement current
approaches because of the level of disease and tissue
complexity.8,9 Invasive pancreatic ductal adenocarcinoma
(PDAC) is among the most lethal of all solid malignancies
with a 5-year survival rate of 5%.10,11 Early detection of
localized PDAC in some cases enables surgical resection,
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resulting in survival rates as high as 25%, and is considered
the only treatment approach with curative potential.11–13

However, only a minority (10–20%) of cases are identified
early with localized tumor, and the remaining cases are
characterized by invasive disease.13,14 Advancements in
chemotherapeutics and targeted therapies have provided
modest improvements in survival for later-stage PDAC.
However, these therapies are often confounded by highly
heterogeneous tumors and survival benefits remain measured
in weeks, with the majority of patients succumbing to
recurrent disease.15,16 Early detection of PDAC for more
patients and the development of new therapeutics tailored to
heterogeneous disease biology could have a significant impact
upon patient survival, but these developments necessitate a
better understanding of pathogenesis and the molecular
changes that occur in the pancreas giving rise to PDAC.17

PDAC is often characterized by genetically and morpho-
metrically heterogeneous tumor cell populations and a
dynamic inflammatory infiltrate that begins during PanIN
stages of the disease highlighting the uniqueness and
complexity of each individual PDAC tumor.8,9,18 The PDAC
tumor microenvironment (TME) drives inflammation, dis-
rupts the normal tissue architecture through the deposition of
fibrotic matrices, and limits the diffusion of therapeutic
drugs.8,19–22 Taken together, these factors create significant
challenges for researchers and clinicians to develop robust,
objective, and quantitative assessments of PanIN and PDAC
lesions for diagnostic and therapeutic purposes. Furthermore,
assessing contextual tissue phenotypes relative to genomic
and gene expression data is challenging, given the level of
heterogeneity observed in PDAC and the limited tissue-based
end points generated by manual evaluation of pancreatic
tissue. tIA has the potential to address some of these key
challenges and complement current efforts to identify novel
drugs and diagnostics. Indeed, utilizing tIA in other cancer
types, such as breast cancer, has provided novel insights into
disease biology and biomarkers, and suggests that similar
paradigms could be valuable for PDAC studies.7,23

Pancreatic intraepithelial neoplasia (PanIN) is one of the
three non-invasive forms of pancreatic neoplasia, and is the
most common precursor to invasive PDAC.11,14,24,25 PanIN
lesions are stratified into four categories, based on the
histologic appearance of the epithelium of the small caliber
pancreatic ducts: PanIN-1A, PanIN-1B, PanIN-2, and
PanIN-3. PanIN-3 is considered to be the direct precursor
to PDAC, whereas PanIN-1 and PanIN-2 are not currently
recognized to have clinical significance (reviewed in Hruban
et al.26). A number of genetically engineered mouse models
have been established based on mutations observed in human
PDAC and can be used as disease models for developing and
testing potential tIA solutions.27,28 Specifically, the KPC
mouse model is a validated and clinically relevant PDAC
model that develops all stages of PanIN lesions and relies on
conditionally activated Kras and p53 functions.28,29 In the
present study, we will describe a tIA-based platform for

objectively quantifying biomarker expression in PanIN lesions
from KPC mouse pancreata, and will discuss the potential
utility of this platform to support novel PDAC studies. In
addition, to extend the proof-of-concept demonstration of
the tIA platform, the methods developed for KPC mice were
adapted for use in human tissue and Ki-67 biomarker
expression in PanIN lesions in human pancreatic tissue was
evaluated.

MATERIALS AND METHODS
Human PDAC Tissue
IRB-approved, formalin-fixed tumor samples from pancreatic
cancer patients were provided by Conversant Bio (Huntsville,
AL, USA).

Animals
KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre (KPC) mice have
been described previously.29 Mice were genotyped at weaning
by a commercial vendor (Transnetyx, Cordova, TN, USA)
and maintained under specific pathogen-free conditions
according to the established institutional guidelines under
the authority of a UK Home Office project license (Guidance
on the Operation of Animals, Scientific Procedures Act 1986).
All experimental protocols were approved by the UK Home
Office. Four animals were used for the current work.

Ultrasound Analysis
PDAC tumors in KPC mice were imaged via ultrasound using
the VEVO2100 high-frequency-imaging system. Mice were
anesthetized using 1.5 l/min oxygen/isofluorane mixture.
Vital signs were monitored on the VEVO2100 (VisualSonics,
Ontario, Canada). Reference images were captured using the
abdominal package in the B-mode, and three images per
pancreas (10 fields/analysis) were captured via 3D-Mode
combined with the B-Mode for volume analysis following the
manufacturer's instructions (VisualSonics). KPC tumors are
highly fibrotic in nature and were visibly distinguishable
compared with a normal pancreas in the ultrasound field.

Immunohistochemistry and Histopathology
Tissue samples procured from four KPC mice and one
pancreatic cancer patient were immediately placed in 10%
formalin buffered with PBS. Formalin-fixed paraffin-
embedded slides were processed for antigen retrieval and
stained. The following antibodies were used for IHC: anti-Ki-
67 (SP6) (Thermo Scientific, Waltham, MA, USA) and anti-
p53 (CM5; Vector Laboratories, Burlingame, CA, USA).

Whole-Slide Scanning
Slides were digitized utilizing Aperio’s CS bright-field
scanning system at Flagship Biosciences’ tissue analysis
laboratory. For optimal scanning quality, 5–10 focal points
were set for each individual slide, and then scanned at the
× 20 scanner setting. Every image of a digitized slide was
evaluated for scanning artifacts and scans were repeated if
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artifacts were present. In short, slide scans need to be in focus,
without artifacts (such as those caused by improperly or
incompletely cleaned glass slides), and free of stitching
artifacts or other faults that could hamper generation of
accurate data from tIA. Only scans that passed Flagship’s
quality-assessment criteria were included in the study.

Manual Annotation and Image Analysis
Digital images of each tissue section were annotated to
establish regions of interest (ROIs) around target tissue and to
exclude staining and tissue artifacts (eg, tissue folds, artifacts
in the mounting media, and so on). Pancreatic ducts
displaying changes consistent with PanIN-1, -2, and -3
lesions with a diameter of o1 mm, and the immediately
adjacent TME, were included as the target tissue for analysis
in this study.27 Within the scope of this study, PanIN lesions
were not subset to define the ROI, rather ROIs were defined
by regions containing any grade of PanIN lesion and not
containing PDAC or normal pancreatic tissue. tIA was
performed with the CellMap software package (Flagship
Biosciences, Westminster, CO, USA). Nuclei were identified
using the software system based on hematoxylin staining, and
biomarker staining was quantified in each nucleus based on
the optical density of DAB staining. A DAB optical-density
threshold was established to quantify each nucleus as either
positive or negative for biomarker staining. All annotations
and analysis mark-ups were assessed by a board-certified
veterinary pathologist to verify annotation and algorithm
performance and accuracy.

Statistical Analysis
Intra-rater reliability was assessed using intra-class correlation
coefficients (ICC).30 In a fully crossed design, ICC was
calculated as consistency in a two-way model, and measured
the similarity between rank orders.31 Two raters, a pathologist
counting cells manually and the CellMap algorithm counted
total cell numbers in the two tissue compartments (tumor
and TME) of interest for this study for three randomly
placed scoring boxes (ie, N= 6). A scheme for interpreting
similar inter-rater reliability coefficients has been suggested,32

and was utilized as a guideline for interpreting the strength of
the ICC. ‘Substantial’ agreement was considered for
ICC40.60 based on the guidelines proposed by Landis
and Koch.

RESULTS
Manual Annotations Established Tissue Regions for
Analysis
Pancreatic tissue from KPC mice was composed of three
distinct tissue compartments: (1) PanIN lesion (PanIN-1
through 3), (2) TME, and (3) normal pancreatic tissue and
PDAC. The cells comprising PanIN lesions and the
surrounding TME were of interest in this study and
preliminary CellMap tIA algorithms were developed to
attempt automated selection of only the tissue compartments

of interest. For the IHC-stained tissue sections evaluated in
this study, cells were detected by the algorithm based on
nuclear hematoxylin staining and, therefore, nuclear staining
and morphometric parameters were assessed for binning cells
into each respective tissue compartment. The preliminary
algorithms, however, did not adequately exclude normal
pancreatic tissue, given the similarity in nuclear presentation
between normal pancreatic tissue, the PanIN lesions, and the
TME or efficiently exclude regions of PDAC where present.
Therefore, manually establishing a ROI through annotations
was necessary as a first and preliminary step in the analysis
process to focus subsequent automated tissue identification
and separation.

A manual annotation strategy was devised, which included
all PanIN stages and TME cells while excluding staining and
histology artifacts, PDAC and normal pancreatic tissue, and
was applied to each digital image for analysis (Figure 1).
A large inclusive annotation, which defines the ROI, was
placed around each tissue section in samples where the
majority of the tissue section comprised PanIN lesion and
TME cells, and smaller exclusionary annotations were used to
remove normal pancreatic tissue cells and artifacts from
analysis (Figure 1a and b). For some tissue sections, a
significant portion of the tissue contained normal pancreatic
tissue (Figure 1c). Small inclusive annotations were used to
capture PanIN lesion and TME cells in these cases where only
small islands of target tissue within normal pancreatic tissue
were present (Figure 1c and d).

PanIN/TME Tissue Compartment Segmentation was
Guided by tIA
Molecular changes unique to both PanIN lesions and
the TME occur in pancreata during disease progression, and
the separation of these distinct tissue compartments during
analysis is advantageous for developing an understanding of
early PDAC development. Although manual annotation
allowed for the removal of normal pancreatic tissue
from analysis, development of automated tIA tools was
necessary to separately analyze PanIN lesions (PanIN-1
through 3, not distinguished by grade) and the surrounding
TME. Manually identifying image analysis parameters
(eg, nuclear area, nuclear diameter, and so on) for separating
cells in PanIN lesions from the surrounding TME was
particularly difficult because the nuclei of the PanIN lesions
had very similar morphometric and staining features as TME
cells. Therefore, the CellMap algorithm and statistical analysis
methods were utilized to identify morphometric and
staining differences between PanIN lesions and the TME
to identify cell compartment stratification parameters
(Figure 2a).

Selective ROIs were drawn around representative PanIN
lesion cells and TME cells as training regions of tissue. Each
region for analysis was carefully placed around representative
cells to ensure profiling of only the appropriate cells for each
tissue compartment. Approximately one hundred parameters
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relating to the staining and morphometric features of
nuclei within each training tissue compartment were profiled
using the CellMap algorithm (Figure 2b–e). Statistical
analysis of the histogram distributions of the PanIN lesions
and TME cells in each training region of tissue was
performed for each of the ~ 100 parameters profiled. Those
tIA parameters identified as most distinguishing between
PanIN lesion and TME cells were selected as candidates for
stratification criteria (Figure 2f). Three parameters were
chosen based on the statistical analysis; thresholds were
defined for each parameter candidate; and these cell
selection criteria were ultimately integrated into a
custom CellMap algorithm to evaluate biomarker expression
in PanIN lesion and TME cells as separate tissue
compartments.

Automated CellMap Counting of PanIN Lesion and TME
Cells was Consistent with Manual Pathologist-Based
Counting
Biomarker expression positivity gates were set in the CellMap
algorithm with a pathologist's guidance once the cell
compartment selection criteria were integrated, and the
algorithm was applied to three randomly placed boxes on
one p53 IHC-stained KPC mouse tissue sample (Figure 3a).
The randomly placed boxes were also evaluated by a board-
certified veterinary pathologist, and the pathologist's and
algorithm-counting concordance for total cell counts in the
PanIN lesion and TME tissue compartments was assessed. A
linear correlation was observed between pathologist-based
counting and CellMap counting for both total cell counts and
total p53-positive cell counts in PanIN lesions and the TME as

Figure 1 Representative images of the manual annotations used in this study are shown. (a) An example of a whole-tissue section from a KPC mouse
containing predominately the target tissue (PanIN and TME) for analysis is shown with the annotation mask overlaid in green. A large inclusive
annotation (continuous green line) is drawn to include the target tissue, whereas smaller exclusionary annotations (dashed green line) are used to
exclude non-target tissue and artifacts. (b) A higher magnification (×10 mag.) example field from the KPC mouse tissue section in (a) is displayed. Green
annotations are example exclusionary annotations around normal pancreatic tissue. (c) An example of a whole-tissue section from a KPC mouse
containing predominately non-target tissue is shown. Small inclusive annotations are drawn to include only the target tissue (PanIN and TME), whereas
minimal exclusionary annotations are needed to exclude non-target tissue and artifacts. (d) A higher magnification field (×10 mag.) from the KPC mouse
tissue section in (c) is displayed. Green annotations are example inclusion annotations around the target tissue. All panels are from Ki-67 IHC-stained
tissue sections. The black boxes in (a and c) highlight the location of higher-magnification fields displayed in (b and d), respectively.
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expected (Figure 3b and c). The concordance of CellMap-
based counts with pathologist counts, intra-rater reliability,
was evaluated using the ICC.30 The ICC value for CellMap- vs
pathologist-based total cell counts was 0.8 (95% CI: (0.12,
0.97)), indicating substantial consistency between the two sets
of counts.32 The end point of interest for this proof-of-
concept study, percent biomarker-positive cells, was calcu-
lated and was found to have similarly strong concordance
between algorithm- and pathologist-based scores (Figure 3d).

The ICC value for CellMap- vs pathologist-based percent p53
+ scores was 40.95, similarly supporting the notion that the
CellMap algorithm was scoring in a manner consistent with a
pathologist.

PanIN Lesion and TME p53 and Ki-67 Expressions were
Assessed Across Whole-Slide Images Using tIA
The CellMap-based tIA platform developed herein was used
to quantify expression of p53 and Ki-67 in PanIN lesion and

Figure 2 Tissue image analysis utilized to identify parameters for PanIN/TME compartment stratification scheme. (a) A schematic of the process by
which tIA profiling of user-identified training PanIN and TME tissue regions can be used to identify tissue compartment stratification parameters is
outlined. (b) Separate annotations are drawn around PanIN lesions (yellow annotations) in a training region of tissue and are indicated by black arrows
(×10 mag.). (c) A higher magnification (×20 mag.) of a training PanIN lesion captured by an annotation for analysis (top panel) is shown. Each cell within
the annotated region was detected by the algorithm and profiled to capture the staining and morphometric characteristics of PanIN lesion cells (bottom
panel). (d) An annotation was drawn around the TME adjacent to PanIN lesions (cyan annotation) to train the algorithm to detect the TME tissue
compartment (×10 mag.). (e) A higher magnification image (×20 mag.) of the TME region is shown (top panel), and was analyzed to profile the cells in
the TME (bottom panel) adjacent to PanIN lesions. For mark-up images shown in (c and e) (bottom panels), blue-marked cells are nuclei identified by
the algorithm that are negative for biomarker staining and red-marked cells are nuclei identified by the algorithm that are positive for biomarker
staining. All panels are taken from p53 IHC-stained KPC mouse tissue sections. (f) Statistical methods were used to assess which of the ~ 100 tIA cell
parameters profiled for each tissue compartment were the most differentiating between PanIN lesions (blue histogram) and the TME (red histogram).
Three candidate parameters were selected as promising tissue compartment stratification features. The black bar in each plot denotes the gate for each
image analysis parameter that best discriminates between PanIN lesion and TME cells; this gate was determined in a semi-automated manner using
statistical tools to assess discriminating power.
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TME cells across whole-tissue images of KPC mouse
pancreata. Cell-by-cell analysis of biomarker expression
across whole-tissue sections was a task that would have been
difficult to or impossible to perform with manual assess-
ments, while reaching an acceptable level of accuracy, given
the number of cells analyzed ranging in the tens of thousands
to over one hundred thousand cells. A qualitative assessment
of the tissue sections indicated an increased p53 expression in
PanIN lesion cells, which was consistent with the expected
impact on protein expression of the p53 mutation present in
KPC mice following loss of heterozygosity of the wild-type
allele 33,34 (Figure 4a). Four p53 IHC-stained KPC mouse
pancreata tissue sections were evaluated using the algorithm
(Figure 4b). A significant increase in the percentage of

p53-positive cells in PanIN lesion cells relative to the TME cell
compartment was observed, as expected, and provided a
quantitative reflection of the qualitative assessment of the
tissue (Figure 4c). Approximately 27 000–178 000 cells were
assessed to derive the percent p53-positive cell score in each
tissue compartment for each sample, which was a substantial
increase in sampling of cells to determine the end point
measure when compared with a typical manual assessment on
the order of hundreds of cells. Ki-67 expression was similarly
quantified to assess the proliferative level of PanIN lesion cells
relative to surrounding TME cells (Figure 4d and e). Tissue
sections from four KPC mouse pancreata were assessed using
the algorithm, and the percentage of Ki-67-positive cells was
found to be similar between the TME and PanIN lesion tissue

Figure 3 Assessment of CellMap algorithm consistency with pathologist-based counting of representative tissue areas. (a) A representative counting
box (green annotation box, 300 μm×300 μm) was placed on a KPC mouse pancreas tissue sample and is shown in the left panel. The tissue sample
was stained with p53 IHC. The CellMap algorithm was applied to each box, and p53-positive and -negative cells in the TME cell compartment (middle
panel) and PanIN lesion cell compartment (right panel) were counted. For each mark-up image, blue-marked cells are p53-negative nuclei in the
respective tissue compartment, red-marked cells are p53-positive cells in the respective tissue compartment, and green-marked cells are those cells
excluded from biomarker analysis and counting (×20 mag.). (b) Pathologist vs CellMap algorithm total cell number counts for three randomly placed
counting boxes (300 μm×300 μm) are displayed for the TME and PanIN lesion cell compartments. The dashed line represents a linear fit of the data,
and is overlaid on the plot for reference. (c) Similarly, pathologist vs CellMap algorithm total p53-positive cell counts within the three randomly placed
counting boxes are displayed, and a dashed line representing the linear fit of the data is shown for reference. (d) The end point measurement for this
study, the percentage of p53-positive cells in each respective tissue compartment, is displayed for each of the three randomly placed counting boxes
for both TME and PanIN lesion compartments and demonstrates strong agreement between algorithm-based values and pathologist-based values.
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compartments (Figure 4f). A low percentage of Ki-67-positive
cells was observed in both tissue compartments, and was
consistent with a lower proliferative index often observed in
PanIN lesions.35 Similar to the assessment of p53 in KPC
mice, ~ 21 000–150 000 cells were sampled by the algorithm
in each tissue compartment across whole-slide images, and
represented a robust measure of the percentage of Ki-67-
positive cells.

tIA Tools Developed for KPC Mice were Translated to
Assess Human Samples
Successful application of tIA tools for the assessment of
biomarker expression in PanIN lesion and TME cells from the
KPC mouse model raised the question as to whether similar
approaches could be used to assess human tissue. To test this
possibility, the approach described herein for assessing KPC
mice was utilized to develop a CellMap-based fit-for purpose

algorithm solution for assessment of Ki-67 expression in a
representative human tissue sample available for study as a
proof-of-concept for translating the approach utilized in the
preclinical mouse model to human tissues (Figure 5a). tIA
profiling of representative PanIN lesion and TME training
regions of tissue, and statistical analyses, were utilized to guide
the selection of two tIA parameters as stratification candidates
(Figure 5b). The selected tissue stratification parameter
candidates, and corresponding thresholds, were integrated
into a custom CellMap algorithm that resulted in robust
stratification of PanIN and TME tissue compartments in the
human sample (Figure 5c and d, respectively). As a proof-of-
concept, the percentage of Ki-67-positive cells in the PanIN
lesion and TME tissue compartments were determined using
the algorithm, and approximately twice as many Ki-67-
positive cells were observed in PanIN lesions relative to the
TME cell compartment for the human sample analyzed

Figure 4 Whole-slide image analysis of p53 and Ki-67 expression in PanIN lesion and TME cells. (a) A representative image of a p53 IHC-stained tissue
section is shown. (b) The CellMap algorithm was applied to the p53 IHC-stained tissue sections to quantify p53 biomarker expression in PanIN lesion
and TME cells separately. The left panel is an analysis mark-up of the TME-based analysis in a representative image field and shows predominately
negative p53 staining in the TME. The right panel demonstrates the PanIN lesion-based analysis in the same image field, and shows predominately
positive p53 staining in PanIN lesions. For each mark-up image, blue-marked cells are p53-negative nuclei in the respective tissue compartment, red-
marked cells are p53-positive cells in the respective tissue compartment, and green-marked cells are those cells excluded from biomarker analysis and
counting. (c) A summary of p53 staining in PanIN lesion and TME cells across the entire tissue sections is shown for four KPC mouse tissues analyzed,
and indicates substantially more p53-positive cells in PanIN lesions. Results are presented as the percent of total cells within the respective tissue
compartment positive for p53 staining, and the mean value is displayed. Error bars represent ± one s.d. around the mean value. (d) A representative
image of a Ki-67 IHC-stained tissue section is shown. (e) Analysis of the TME tissue compartment is shown in the left panel, and demonstrates a mix of
Ki-67-positive and -negative nuclei. Similarly, a mix of Ki-67-positive and -negative nuclei are observed in PanIN lesions and are shown in the right
panel. For each mark-up image, blue-marked cells are p53-negative nuclei in the respective tissue compartment, red-marked cells are p53-positive cells
in the respective tissue compartment, and green-marked cells are those cells excluded from biomarker analysis and counting. (f) A summary of Ki-67-
staining analyses in PanIN lesion and TME cells for entire tissue sections from four KPC mice is shown. Similar levels of Ki-67-positive nuclei between the
two tissue compartments were observed, and results are presented as the mean percentage of Ki-67-positive cells in each tissue compartment for the
four samples analyzed. Error bars depict ± one s.d. around the mean value. All images in panels (a, b, d, and e) are displayed at × 20 magnification.
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(Figure 5e). Whereas this finding was inconsistent with the
similar analysis of KPC mice from this study, the mild
increase in Ki-67-positive cells in PanIN lesions in human
tissue was consistent with previous findings.35

DISCUSSION
Identification and stratification of PanIN lesions and the
surrounding TME can be a challenging task considering the
varied histologic appearance and lesion classification scheme,
but can be performed by a skilled pathologist enabled by the
complexities of the human brain. Subsequent quantification
of biomarker staining, however, is more difficult for a
pathologist evaluating a whole-slide image, and is only made
possible when a small representative area of tissue is manually
counted. Interestingly, the opposite is true for tIA approaches.
Stratification of PanIN lesion cells from TME cells is
challenging, even with sophisticated computational
approaches, which still fall short of the human brain,
although quantification of biomarker staining across an
entire tissue section is trivial once the correct cells are
identified. The present study highlights this dichotomy, but

also provides an example of the utility of tIA, which is
overseen by a pathologist to guide the development of
powerful analysis algorithms that perform well in PDAC.

Importantly, the tIA solutions presented in this proof-of-
concept study were developed to complement the skills of a
trained pathologist by providing an objective and quantitative
measure of biomarker staining across entire tissue samples
and across larger study cohorts. In this theme, pathology
input was sought at each phase of algorithm development and
refinement to ensure accurate identification of the correct cell
subsets, and all analyses (eg, cell detection and biomarker
scoring) were reviewed by a board-certified veterinary
pathologist to verify that each tissue sample was evaluated
accurately. By combining the powerful image analysis
approaches described herein with pathologist oversight, we
present an image analysis platform that could be utilized to
advance PDAC biomarker and therapeutic development in
both research and clinical environments by enabling assess-
ments of pre-neoplastic lesions.

Separate analysis of each cell-type compartment in this
study was particularly difficult because PanIN and TME cells

Figure 5 Application of the PanIN image analysis paradigm to a human pancreas tissue sample. (a) A representative image field displaying PanIN
lesions in the human pancreatic tissue sample used in this study is shown. The tissue had been stained with Ki-67 IHC. (b) Training regions of PanIN
lesion and TME cells were profiled and two cell features, one feature also selected for KPC mice and one new feature, were selected as candidates for
tissue compartment stratification parameters. The histogram distributions of each parameter are shown, and the black bar denotes the cut point that
optimally stratifies PanIN lesion cells from TME cells. (c) An analysis mark-up image is displayed demonstrating the performance of the CellMap
algorithm selection of PanIN lesion cells using the tissue compartment stratification scheme and quantification of Ki-67 staining. (d) Displayed is an
analysis mark-up image showing the performance of the algorithm to select only the TME cells and quantify Ki-67 staining in this tissue compartment.
For (c and d), blue-marked cells are Ki-67-negative cells in the respective tissue compartment, red-marked cells are Ki-67-positive cells in the respective
tissue compartment, and green-marked cells are those excluded from biomarker expression analysis. (e) A summary of the percentage of Ki-67-positive
cells analyzed in the human tissue sample (N= 1) is displayed for both the PanIN lesion and TME tissue compartments. This proof-of-concept analysis
demonstrates the utility of the CellMap software for assessing biomarker expression in PanIN lesions in human pancreas tissue samples. Images in
panels (a, c, and d) are shown at × 20 magnification.
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presented with significant overlap of basic measures of
nuclear architecture (eg, nuclear diameter, eccentricity, and
area), making manual identification of a tissue compartment
stratification scheme difficult. tIA was utilized to profile
cells in user-identified training areas of PanIN lesion and
TME cells, and guided the identification of a tissue
compartment stratification scheme. The tissue compartment
stratification scheme was integrated into the CellMap
algorithm and was able to segment PanIN lesion cells from
TME cells in both human and KPC mouse pancreas tissue. In
addition to the challenge outlined above, further limitations
of the developed algorithm include its inability to differentiate
between PanIN-1, 2, and 3. In particular, this limitation is
because of the algorithm being designed to separate neoplastic
tumor epithelium from stroma. Digital subclassification of
PanIN would require separate algorithm development.
Currently, manual evaluation of ductal lesions by a
pathologist is the only accepted way to perform this
subclassification.

The refined CellMap algorithm resulting from this work
represented a platform that could be utilized to characterize
hundreds of parameters relating to biomarker expression and
the morphometric features of individual cells in the PanIN
and TME cell compartments, data which could be further
analyzed to elucidate novel mechanisms or molecular
interactions in PanIN and PDAC biology. tIA-based
approaches, such as the CellMap platform described herein,
can enable these novel insights by generating a diverse data set
describing each unique tumor in great detail, and similar
paradigms in breast cancer have identified new prognostic
factors related to TME cells and have improved prognostic
assessments by genomic profiling.7,9,23

Quantification of biomarker expression in each cell across
an entire tissue section was relatively straightforward once the
central challenge of correctly stratifying the PanIN lesion and
TME tissue compartments was solved. As a proof-of-concept
of the CellMap tIA platform, Ki-67 and p53 expression were
assessed in KPC mouse pancreata. tIA scoring of each sample
provided robust quantitative values for p53 and Ki-67
expression in the KPC mouse model because each value was
based on sampling tens of thousands, to over one hundred
thousand, cells in each tissue compartment for each sample.
Sampling cells across an entire tissue section is particularly
advantageous for PanIN and PDAC, where high degrees of
tissue heterogeneity are expected and manual scoring of
representative areas is likely to inadequately capture the key
features of the tissue. The CellMap tIA platform was able to
capture the range of heterogeneity on a cell-by-cell basis
across an entire tissue section, and these data provide the level
of dimensionality likely needed to identify complex relation-
ships between tissue phenotypes, genomic profiling data, and
molecular changes during disease progression from non-
neoplastic to PanIN to PDAC.
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