
MicroRNA-19 triggers epithelial–mesenchymal transition
of lung cancer cells accompanied by growth inhibition
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The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of
miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the
underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19
including miR-19a and miR-19b-1 triggered epithelial–mesenchymal transition (EMT) of lung cancer cells A549 and
HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin,
ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin,
and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were
observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed
EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed
significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells.
Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of
A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer
cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and
in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19
triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced
proliferation of cells.
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It has been reported that microRNAs (miRNAs) have
critically important roles in carcinogenesis, cancer invasion
and metastasis, and tumor angiogenesis.1–4 The miR-17-92
gene cluster encodes six miRNAs of four miRNA families:
the miR-17 family including miR-17-5p and miR-20a, the
miR-18 family (miR-18a), the miR-19 family (miR-19a
and miR-19b-1), and the miR-92 family. Upregulation of
these miRNAs have been widely reported in B-cell lymphoma
and numerous solid tumors, such as lung, breast, colon,
pancreatic, prostate, and stomach cancers.1,5 For e.g., the
interaction between miR-17-92 and c-Myc contributed to the

development of lymphomas in mice.1 In addition, enforced
expression of the miR-17-92 gene cluster promoted tumor
cell proliferation of lung cancer,6 esophageal cancer,7 and
hepatocellular carcinoma,8 suggesting the oncogenic role of
miR-17-92. Among the mir-17-92 gene cluster, the miR-19
family were considered as key oncogenic components based
on experiments in mouse models of lymphoma.9,10 The
present study aimed to investigate the role and mechanism of
miR-19 in the progression of lung cancer.

Previous studies have also reported that upregulation of
miR-19a and miR-19b-1 was associated with cancer invasion

1Cancer Research Institute, Southern Medical University, Guangzhou, China; 2Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, China; 3Department
of Oncology, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, China; 4Department of Cardiovascular, Guangdong No. 2 Provincial People’s Hospital, Guangzhou,
China; 5College of Biotechnology, Southern Medical University, Guangzhou, China; 6School of Traditional Chinese Medicine, Southern Medical University, Guangzhou,
China; 7Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou,
China; 8Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China and 9Institute of Comparative Medicine & Laboratory Animal Center,
Southern Medical University, Guangzhou, China
Correspondence: Professor K-T Yao, MD or Dr D Xiao, PhD, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China or Dr D-J Li, MD, Department
of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
E-mail: KaiTai_Yao@yeah.net or Xiao_d@hotmail.com or lidanjuan2006@126.com
10These authors contributed equally to this work.

Received 12 January 2015; revised 12 April 2015; accepted 28 April 2015

1056 Laboratory Investigation | Volume 95 September 2015 | www.laboratoryinvestigation.org

Laboratory Investigation (2015) 95, 1056–1070
© 2015 USCAP, Inc All rights reserved 0023-6837/15

http://dx.doi.org/10.1038/labinvest.2015.76
mailto:KaiTai_Yao@yeah.net
mailto:Xiao_d@hotmail.com
mailto:lidanjuan2006@126.com
http://www.laboratoryinvestigation.org


and metastasis, and poor prognosis of patients with
early non-small-cell lung carcinoma (NSCLC),11–13 gastric
cancer,14 and esophageal squamous cell carcinoma.15 In
addition, high levels of serum miR-19a and miR-19b-1 were
considered as independent prognostic factors for poor
survival of NSCLC patients.12,13 In a mouse model of
c-Myc-driven B-cell lymphomas, Em-myc/miR-19b-1 lym-
phomas are highly invasive as lymphoma cells invaded the
thymus and bone marrow, as well as visceral organs outside
the lymphoid compartment, including the liver, lung,
and, occasionally, the kidney.10 More recent studies have
reported that miR-19a or miR-19b-1 promoted the migration
and invasion of cervical carcinoma cells,16 colon cancer
cells,17 and gastric cancer cells through targeting the tumor
suppressor MXD1,14 and Hela, MCF7, and Huh7 cells
through targeting TP53.18 Taken together, these results
support that miR-19 is involved in cancer invasion and meta-
stasis; however, the underlying mechanisms remain largely
unknown.

Interestingly, we observed in a preliminary experiment
that lung cancer cells with miR-19 (miR-19a/miR-19b-1)
overexpression exhibited typical spindle-shaped and fibroblast-
like morphology, suggesting the occurrence of epithelial–
mesenchymal transition (EMT).

EMT is a central mechanism contributing to the invasion
and metastasis of various cancers.19,20 Therefore, identifica-
tion of key factors involved in EMT and investigation of
the molecular mechanisms underlying EMT are of critical
importance for understanding tumor invasion and metastasis,
and developing novel interventions for the treatment of
metastatic cancers.

Given that miR-19 is associated with cancer invasion and
metastasis and EMT is the central mechanism underlying
cancer invasion and metastasis,10–18 the present study aimed
to investigate whether miR-19 is able to induce EMT and
enhance invasion and metastasis of human cancer cells. Our
results showed that enforced expression of miR-19 in lung
cancer cells induced EMT, which caused growth inhibition
but elevated migration of the cancer cells.

MATERIALS AND METHODS
Establishment of Lung Cancer Cell Lines Stably
Expressing miR-19
The human lung cancer cell line A549-luc with luciferase
(Luc) expression was purchased from Xenogen Corporation
(MA, USA). The human lung cancer cell line HCC827 was
obtained from the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). The A549 and
HCC827 cells were cultured in RPMI1640 medium supple-
mented with 10% fetal bovine serum (FBS). Construction of
the lentiviral vector of pLV-miR-19 and the recombinant
lentiviruses LV-con and LV-miR-19 were conducted accord-
ing to the protocol described in the Supplementary Methods.
The recombinant lentiviruses were then used to infect A549
and HCC827 cells. Successful overexpression of miR-19 was

verified by quantitative real-time RT-PCR (qRT-PCR) (data
not shown).

miRNA Transient Transfection
The human miR-19 inhibitor (miR-19a inhibitor and
miR-19b-1 inhibitor) and a nonspecific miRNA inhibitor
control (i.e., inhibitor control) were all purchased from
Shanghai GenePharma (Shanghai, China). MiRNAs were
transiently transfected into cells at a working concentration of
100 nmol/l using lipofectamine 2000 reagent (Invitrogen, CA,
USA) in accordance with the manufacturer’s procedure.
Cells for total RNA isolation and the transwell migration assay
or Boyden invasion assay were harvested 48 h after oligo-
nucleotide treatment.

RNA Isolation and qRT-PCR
Total RNA was extracted from lung cancer cells using the
Trizol reagent (TaKaRa) and reversely transcribed into cDNA
using the PrimeScript RT reagent Kit (TaKaRa) according to
the manufacturer’s instruction. To quantify the expression of
miR-19 and protein-coding genes, qRT-PCR was performed
using a SYBR Green qRT-PCR master mix kit (TaKaRa) on
a Stratagene Mx3000P qRT-PCR System according to the
manufacturer’s instruction. The primers used in qRT-PCR
assay were listed in Supplementary Tables S1–S3. To measure
the level of miR-19, U6 was used as an internal control,
whereas GAPDH was used as an internal control for the
mRNA expression analysis of protein-coding genes. All
samples were normalized based on internal controls, and
fold changes were calculated through relative quantification
(2−ΔΔCt).

Western Blot Analysis
Total proteins were extracted from A549 and HCC827 cells,
and western blot was conducted as previously described.
Briefly, extracted proteins were separated by SDS-PAGE, and
electrophoretically transferred to a polyvinylidene difluoride
membrane. The blots were probed with primary antibodies
and then horseradish peroxidase-labeled goat-antimouse IgG.
Hybridization signal was detected using enhanced chemi-
luminescence. To measure the expression of different
proteins, β-actin was used as a loading control. The antibodies
used in this study are shown in Supplementary Table S4.

Transwell Migration Assay and Boyden Invasion Assay
For the transwell migration assay, tumor cells (1 × 105) were
seeded into the upper chamber (BD Biosciences, MA) with
serum-free DMEM. Boyden invasion assay was conducted
with matrigel (BD Biosciences) in the upper chamber. DMEM
with 10% FBS was added into lower compartment as chemo-
attractant. A549 cells were allowed to migrate for 14 and 24 h
in transwell migration assay and Boyden invasion assay,
respectively. HCC827 cells were allowed to migrate for 22 and
46 h in transwell migration assay and Boyden invasion assay,
respectively. Remaining cells in the upper chamber were
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removed using a cotton swap. The cells migrated to the lower
surface of the membrane were fixed with 100% methanol,
stained with hematoxylin, and counted in five randomly
selected optical fields under a microscope.

Cell Adhesion Assay
Cell adhesion assay was performed according to the protocol
previously described.21 Briefly, miR-19- and vector-
expressing A549 cells were seeded onto culture dishes and
grown to ~ 90% confluence. The confluent monolayers were
then washed with PBS and treated with 0.05 mM EDTA. Cells
detachment was examined at different time intervals (2, 20,
30, and 40 min) under a phase contrast microscope and cell
adhesion was evaluated by counting the adherent cells.

Microarray Analysis
Microarray analysis was carried out using the Affymetrix
Human Gene U133 Plus 2.0 array according to the manu-
facturer’s standard protocol. This array contains 47 000
transcripts from 38 500 well-characterized human genes.
RNA preparation was conducted according to the Affymetrix
GeneChip Expression Analysis Technical Manual. Briefly,
total RNA was extracted from frozen samples using TRIZOL
reagents, purified, and concentrated using the RNeasy
MinElute Cleanup kit and an on-column DNase treatment,
respectively. RNA was quantified and qualified using a UV
spectrophotometer at 260 and 280 nm. RNA integrity was
checked by electrophoresis (1% formaldehyde denaturing gel)
and stained with ethidium bromide. DNA labeling, hybridiza-
tion, washing, and scanning were performed according to the
standard operating procedure of CapitalBio Corporation.
Briefly, total RNA was used to synthesize cDNA that was
fluorescently labeled with Cy5 or Cy3-CPT using Klenow
enzyme. Labeled cDNA was hybridized with probes on the
Affymetrix Human Gene U133 Plus 2.0 array at 45 °C for 16 h
in an Affymetrix GeneChip Hybridization Oven 640. Array
slides were then washed and stained in the Affymetrix Fluidics
Station 450. Subsequently, array slides were scanned using
Affymetrix GeneChip Scanner 3000, and the obtained images
were analyzed using the LuxScan Version 3.0 (CapitalBio
Corporation). LOWESS method was used for the normal-
ization. A total of three biological replicates were performed.

Statistical t-test and multiple test corrections were con-
ducted to identify genes with significant expression (increase
or decrease). Significantly expressed genes were defined as
genes with a false discovery rate o0.01 and twofold or higher
change of expression based on three independent biological
replicates. Data analysis was performed using the Significance
Analysis of Microarray software (SAM 3.0, Stanford
University, USA; http://www-stat. stanford.edu). Significantly
expressed genes were grouped into functional categories
according to the Gene Ontology (GO) information and ana-
lyzed using the Molecule Annotation System (http://bioinfo.
capitalbio.com/mas3/). Biological pathways were identi-
fied according to known pathways in the KEGG database

(http://www.genome.jp/kegg/). To validate the microarray
results, qRT-PCR was performed to evaluate the expression of
a number of significantly expressed genes identified through
microarray analysis.

Luciferase Reporter Assay
The dual luciferase reporter gene plasmid (i.e., pLuc-PTEN-
-3′-UTR-wt) containing the putative miR-19-binding site at
the 3′-UTR of PTEN mRNA was purchased from Kangbio
(Shenzhen, China). Cells were seeded in 48-well plates and
cultured for 48 h. The pLuc-PTEN-3′-UTR-wt plasmid
was co-transfected into A549 with the miR-19a mimics,
mimics control, miR-19a inhibitor, or inhibitor control
using lipofectamine 2000 reagent (Invitrogen), respectively.
Luciferase and Renilla activities were evaluated 48 h post
transfection using the Dual Luciferase Reporter Assay Kit
(Promega) according to the manufacturer’s instructions.
All experiments were performed independently in triplicate.

RNA Interference (RNAi)
RNAi was used to knock down PTEN expression. The specific
siRNA duplexes targeting the human PTEN gene (sense:
5′-GAGCGUGCAGAUAAUGACAdTdA-3′; antisense: 3′-dAd
TCUCGCACGUCUAUUACUGU-5′) were synthesized by
RiboBio (Guangzhou, China). The siRNA duplexes with
nonspecific sequence were used as a negative controls.
SiRNA transfection was carried out with lipofectamine 2000
(Invitrogen) according to the manufacture’s instruction.
Transfection efficiency was evaluated by western blot.

MTT Assay and Cell-Cycle Analysis
A549 cells infected with either LV-con or LV-miR-19 were
plated in 96-well plates (1 × 103 cells/well) in a final volume of
200 μl, and then cultured for 1, 2, 3, 4, 5, 6, and 7 days. MTT
assay was used to evaluate the effects of miR-19 on cell
growth. For cell-cycle analysis, A549 cells infected with either
LV-con or LV-miR-19 were plated in six-well plates (2 × 105

cells/well). At 48 h post plating, cells were stained with
propidium iodide (PI) and the cell cycle was analyzed using
flow cytometry.

Colony Formation Assay
A549 and HCC827 cells infected with either LV-con or
LV-miR-19 were counted, plated at 200 cells for the pooled
population in six-well plates, and cultured with RPMI1640
complete culture medium for 10 days. Colonies were fixed
with methanol and stained with hematoxylin. The plates were
photographed after washing off the dye and the colony was
counted under the microscope. At least three independent
experiments were carried out for each assay.

Animal Tumor Models
The animal experiments were carried out in strict accordance
with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the Southern Medical University.
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The animal protocol was approved by the Committee on
Ethics of Animal Experiments of the Southern Medical
University (approval number: 2013-0012). Female BALB/c
nude mice (4–5 weeks) were purchased from the Center of
Experimental Animals, Southern Medical University, and
housed in microisolator cages under aseptic conditions. A549
cells that stably express miR-19 (5 × 106 cells) or vector
control (5 × 106 cells) were subcutaneously injected into the
right or left dorsal thigh of mice (n= 6). All surgeries were
performed under sodium pentobarbital anesthesia, and all
efforts were made to minimize the suffering of animals.

Analysis of Caspase-3 and Caspase-8 Activities
The activities of caspase-3 and caspase-8 were evaluated using
the commercial caspase-3 and -8 activity assay kits (Beyotime
Institute of Biotechnology, Haimen, China) according to the
manufacturer’s instruction. Cells attached to the dish and in
the supernatant were collected and lysed in 5 mM Tris-HCl
(pH 8.0), 20 mM EDTA, and 0.5% Triton X-100 at 4 °C. Ac-
DEVD-pNA and Ac-IETD-pNA were used as substrates to
measure the enzymatic activities of caspase-3 and caspase-8,
respectively. Enzymatic activity assays were conducted on 96-
well microtitre plates by incubating 10 μl proteins from cell
lysate per sample in 80 μl reaction buffer (1% NP-40, 20 mM
Tris-HCl (pH 7.5), 137 mM Nad, and 10% glycerol)
containing 10 μl caspase-3 substrate (Ac-DEVD-pNA,
2 mM) or caspase-8 substrate (Ac-IETD-pNA, 2 mM). Lysates
were incubated at 37 °C for 4 h. Samples were measured on an
ELISA reader (Bio-Tek ELX800) at the absorbance of 405 nm.
The protein concentration of cell lysates was determined
using the Bradford protein assay kit, and the results were
presented as units of caspase activity per μg of protein.

Statistical Analysis
Data were presented as mean± s.d. unless otherwise indicated
of at least three independent experiments. Statistical analysis
was performed using a SPSS 13.0 software package. Two-
tailed Student’s t-test was used for comparisons between two
independent groups. Statistical significance was assessed by
the Student’s t-test (#Po0.05; *Po0.01).

RESULTS
miR-19 Overexpression Induced EMT-Like Cellular
Marker Alterations in A549 and HCC827 Cells
We first evaluated the expression of miR-19a and miR-19b-1
in available nine lung cancer cell lines (i.e., H358, H1650,
A549, Spc-A-1, HCC827, 95D, H23, H446, and H460 cells)
and the BEAS-2B cell line (a normal human bronchial
epithelial cell line) based on qRT-PCR. The results showed
that the expression of miR-19a and miR-19b-1 was
significantly higher expressed in lung cancer cell lines than
that in BEAS-2B cells (Supplementary Figure S1).

Then, miR-19a and miR-19b-1 were ectopically expressed
in A549 and HCC827 cells to investigate the biological
function of the miR-19 family in the development of lung

cancer. Surprisingly, ectopic expression of miR-19 in A549
and HCC827 cells led to the occurrence of spindle-like and
fibroblastic morphology (Figure 1a), suggesting that miR-19-
expressing A549 and HCC827 cells might have undergone
EMT. To confirm that miR-19 induced EMT, we examined
the expression of a number of epithelial and mesenchymal
markers. First, qRT-PCR results showed that miR-19
expression significantly downregulated the epithelial marker
E-cadherin and upregulated the mesenchymal markers
vimentin, fibronectin 1 (FN1), N-cadherin, and snail1 in
both A549 and HCC827 cells (Figure 1b). In addition,
western blot analysis also confirmed the reduced expression
of E-cadherin, ZO-1, and α-catenin, as well as increased
expression of mesenchymal markers (i.e., vimentin, FN1,
N-cadherin, and snail1) in miR-19-expressing A549 and
HCC827 cells (Figure 1c). Moreover, immunohistochemistry
staining and western blot analysis revealed significantly higher
expression of FN1, N-cadherin, and vimentin, and signifi-
cantly lower expression of E-cadherin in the xenografts of
miR-19-expressing A549 cells in nude mice, compared with
xenografts derived from vector-expressing A549 cells
(Supplementary Figure S9). To further examine the effects
of loss of miR-19 function on EMT of lung cancer cells,
endogenous miR-19a and miR-19b-1 in A549 and HCC827
cells were silenced using miR-19a inhibitor and miR-19b-1
inhibitor (Supplementary Figure S2), respectively. Down-
regulation of endogenous miR-19a and miR-19b-1 in A549
and HCC827 cells, respectively, increased the expression of
epithelial marker (i.e., E-cadherin) and concomitantly
reduced the expression of mesenchymal markers (i.e.,
vimentin, FN1, and N-cadherin) (Supplementary Figure
S2). Given that activation of the PI3K/Akt pathway is a major
event of EMT,22,23 we examined the PI3K/Akt pathway in
miR-19-expressing A549 and HCC827 cells. As shown in
Supplementary Figure S3, miR-19 overexpression increased
the phosphorylation of Akt in A549 and HCC827 cells, which
was accompanied by a change of the phosphorylation of
GSK-3β, a downstream target of Akt. These results suggest
that miR-19 overexpression activated the Akt/GSK-3β path-
way in A549 and HCC827 cells. In addition, increasing
evidence supports that Stat3 has an important role in EMT of
cancer cells.24–26 As shown in Supplementary Figure S3,
overexpression of miR-19 also significantly increased the
phosphorylation of Stat3 in A549 and HCC827 cells. These
results suggest that miR-19 induced mesenchymal-like
phenotypes and EMT-like cellular marker alterations in
A549 and HCC827 cells through the PI3K/Akt pathway.

miR-19 Overexpression Induced Global Expression
Changes of Genes Related to EMT, Migration, and
Metastasis in A549 Cells
The global gene expression changes induced by miR-19 over-
expression were determined by comparing the gene expres-
sion profiles between miR-19- and vector-expressing A549
cells based on microarray (Figure 2). A total of 352 and 501
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genes were significantly downregulated and upregulated,
respectively, by miR-19 overexpression (Supplementary
Figure S4; Supplementary Table S5).

The genes with significant express changes (Supple-
mentary Figure S4) were submitted to the DAVID online
tool (http://david.abcc.ncifcrf.gov/home.jsp) for GO annota-
tion and pathway enrichment analysis. On the basis of
GO terms, these genes were grouped into three major
categories: biological process, cellular component, and
molecular function. The GO terms representing biological
processes related to EMT, migration, and metastasis are listed
in Figure 2b and Supplementary Table S9. Among the 853
genes with significant expression changes, 206 genes were
related to EMT, migration, and metastasis (upregulated: 134;
downregulated: 72) (Figure 2a; Supplementary Tables S6

and S7). The GO terms representing cellular compart-
ment and molecular function are listed in Supplementary
Table S10.

Functional classification of the differentially expressed
mRNA transcripts based on KEGG pathway analysis also
demonstrated that the upregulated and downregulated genes
are highly associated with focal adhesion, ECM–receptor
interaction, regulation of actin cytoskeleton, cytokine–
cytokine receptor interaction, TGF-beta signaling pathway,
insulin signaling pathway, leukocyte transendothelial migra-
tion, MAPK signaling pathway, cell adhesion molecules,
tight junction, and gap junction (Figure 2c; Supplementary
Table S9).

To validate the microarray results, qRT-PCR was used
to measure the expression of 18 genes (Figure 2d). The

Figure 1 miR-19 overexpression induced epithelial–mesenchymal transition (EMT) of lung cancer cells. (a) The morphology of A549 and HCC827 cells
expressing either the vector control or miR-19 was shown by phase contrast. (b) The relative messenger RNA levels of genes encoding E-cadherin,
vimentin, fibronectin 1 (FN1), N-cadherin, and snail1 in A549 and HCC827 cells determined by quantitative reverse transcription-PCR. (c) The expression
of the epithelial proteins E-cadherin, zona occludens 1 (ZO-1) and α-catenin, and the mesenchymal proteins vimentin, FN1, N-cadherin, and snail1 in the
vector- and miR-19-expressing A549 and HCC827 cells detected by western blot. (d) Ectopic expression of miR-19 in A549 and HCC827 cells restored the
disrupted F-actin stress fiber networks. Stress fibers (polymerized actin) and actin filaments were demonstrated by phalloidin staining (red). To observe
F-actin cytoskeleton, fixed cells were incubated in 200 nM working stock of Acti-stain 670 phalloidin (Cytoskeleton). Cells were counterstained with DAPI
(Sigma) and imaged using a confocal laser-scanning microscope (Olympus FV1000). The miR-19-expressing A549 and HCC827 cells showed clear stress
fibers, whereas the vector-expressing A549 and HCC827 cells showed less stress fibers. DAPI, 4′,6-diamidino-2-phenylindole. *Po0.01.
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qRT-PCR results (Figure 2d) confirmed the expression
changes of 13 genes (IGFBP3, ID2, PTEN, LPAR1, TGFB2,
PIK3CD, TGFB1, PDGFA, TUBB2B, PDGFC, WNT5A,
MMP10, and MMP1) identified by microarray

(Supplementary Table S7). However, TWIST1 and TWIST2
without significant expression changes based on microarray
were found to be significantly downregulated based on the
qRT-PCR assay (Figure 2d). These inconsistent results may be

Figure 2 miR-19 activated a subset of genes involved in EMT, migration, and metastasis of lung cancer cells. (a) Class comparison and hierarchical
clustering of differentially expressed genes involved in EMT and migration between miR-19-expressing and vector-expressing A549 cells. In the cluster
heatmap of genes involved in EMT, migration, and metastasis A1, A2, and A3 represented the total RNA (used in the microarray experiment) isolated
from different generations of vector-expressing A549 cells and B1, B2, and B3 represented the total RNA (used in the microarray experiment) isolated
from different generations of miR-19-expressing A549 cells. Genes with a fold change of higher than 2 and a P-value (t-test) of o0.05 were included in
the analysis. Genes with increased and reduced expressions are shown in red and green, respectively. (b and c) Gene ontology (GO) (b) and KEGG
pathway (c) analyses of up- and downregulated genes in miR-19- and vector-expressing A549 cells. Genes with expression changes of greater than
twofold and P-values o0.05 were identified and classified using GO categories. (d) The messenger RNA levels of selected candidate genes from miR-19-
expressing a549 cells were examined by quantitative reverse transcription-PCR. ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; GO,
Gene Ontology. *Po0.01.
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explained by the low sensitivity of microarray compared with
qRT-PCR in the detection of low-abundant transcripts.

On the basis of these results, miR-19 overexpression
activated a number of EMT- and mobility-related genes in
lung cancer cells, which is likely responsible for the switch on
of the epithelial to mesenchymal gene expression program, as
strongly supported by mesenchymal-like morphological
conversion (Figure 1a), decreased cell adhesion (Figure 3a),
and increased cell motility (Figure 3b) and invasion
(Figure 3c).

Ectopic Expression of miR-19 Restored Disrupted
Cytoskeleton in Lung Cancer Cells
The RhoA/ROCK-dependent pathway is involved in EMT
and cytoskeletal signaling events that are crucial for cell
motility. Cytoskeletal reorganization characterized by the
formation of stress-fiber-bundling arrays is an important

event in endocytosis, cell motility, and cancer cell
invasion.19,27,28

As shown in Supplementary Figure S5 and Supplementary
Tables S7 and S8, microarray analysis identified a number of
cytoskeleton-related genes with significant upregulation
(SPARC, TAGLN, CTGF, RHOU, RASGRP3, RHOB,
PDGFA, ITGB6, ITGA5, PDGFC, RDX, and PALLD) and
downregulation (ITGB4, ITGB8, MYO5C, MYO15B, VAV3,
PLS1, ARHGAP26, and HOOK1) in the A549 cells under-
going EMT induced by miR-19. The GO terms related to
cytoskeleton such as small GTPase-mediated signal transduc-
tion, regulation of cell shape, actin filament bundle forma-
tion, ruffle organization and biogenesis, barbed-end actin
filament capping, and negative regulation of actin filament
depolymerization are listed in Figure 2b and Supplementary
Table S9. Functional classification of the differentially
expressed mRNA transcripts based on KEGG pathway

Figure 3 miR-19 repressed the adhesion, and enhanced the motility and invasion of lung cancer cells undergoing epithelial–mesenchymal transition.
(a) miR-19-expressing A549 cells exhibited reduced cell adhesion than the control cells. Vector- and miR-19-expressing A549 cells showed typical
morphology of cell attachment (left). (b) The motility of miR-19-expressing A549 and HCC827 cells based on the transwell migration assay. (c) The
invasion of miR-19-expressing A549 and HCC827 cells based on the Boyden chamber assay. *Po0.01 and #Po0.05.
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analysis also indicated that the some upregulated or down-
regulated genes were highly associated with the regulation of
the actin cytoskeleton (Figure 2c; Supplementary Table S9).
The GO terms representing cellular compartment (e.g.,
cytoskeleton, filopodium, lamellipodium, cortical actin cytos-
keleton, ruffle membrane, actin cytoskeleton, ruffle, filamen-
tous actin, cell projection, intermediate filament, and actin
filament) and molecular function (e.g., actin binding, GTPase
activity, and actin filament binding) related with cytoskeleton
are listed in Supplementary Table S10.

The expression changes of the genes involved in cytoske-
leton regulation prompted us to examine the status of stress
fiber formation and polymerized actin in miR-19-expressing
cells. Using phalloidin staining, we found that the disrupted
F-actin stress fiber (polymerized actin) networks were
restored in both miR-19-expressing A549 and miR-19-
expressing HCC827 cells (Figure 1d). Therefore, ectopic
expression of miR-19 promoted the formation of stress fibers
in lung cancer cells.

These morphological alterations of the cytoskeleton are
characteristics of EMT, in which epithelial cells lose polarity,
cell–cell contacts, and cytoskeletal integrity, and acquire
metastatic abilities.19,27,28 In summary, these results suggest
that miR-19 overexpression induced EMT, and enhanced the
mobility and invasion of lung cancer cells in vitro.

Decreased Cell Adhesion and Increased Cell Motility
and Invasion of Lung Cancer Cells Undergoing EMT
Induced by miR-19
Given the significant expression changes of genes involved in
EMT and cell motility, we further investigated the adhesion,
motility, and invasion abilities of miR-19-expressing lung
cancer cells based on cell adhesion and migration assays. We
found that miR-19-expressing A549 cells exhibited signifi-
cantly reduced cell adhesion ability compared with control
cells (Figure 3a), which was consistent with the expression
changes of genes related to cell adhesion (e.g., E-cadherin and
N-cadherin) (Figures 1b–d and 2b–d; Supplementary Tables
S7). In addition, miR-19-expressing A549 and HCC827 cells
exhibited mesenchymal-like phenotypes and significantly
enhanced migration and invasion abilities compared with
vector control cells (Figure 3b and c). Conversely, down-
regulation of endogeneous expression of miR-19 significantly
reduced the migration and invasion abilities in A549 and
HCC827 cells (Supplementary Figure S6). These results
suggest that enforced expression of miR-19 in lung cancer
cells triggered EMT, as well as reduced cell adhesion and
increased cell migration and invasion.

PTEN is Involved in miR-19-Induced EMT, Migration and
Invasion in Lung Cancer Cells
Generally, miRNAs regulate the expression of downstream
gene(s) to exert their functions. Putative miR-19 targets
involved in EMT and cell motility were predicted by searching
a number of databases, such as microRNA.org, RNAhybrid,

and miRWalk. Search in these databases revealed that PTEN
was a potential target of miR-19. The 3′-UTR of PTEN
mRNA contains a complementary site for the seed region of
miR-19 (Figure 4a). To determine whether miR-19 regulates
PTEN expression in lung cancer cells, we evaluated the
expression of PTEN in lung cancer cell lines with miR-19
overexpression or miR-19 downregulation. The levels of
PTEN in A549 and HCC827 cells were markedly reduced by
ectopic expression of miR-19 (Figure 4c; Supplementary
Figure S9B), while PTEN expression in A549 and HCC827
cells was significantly increased by silencing of miR-19
(Supplementary Figure S2). Furthermore, we evaluated the
expression of miR-19a, miR-19b-1, and PTEN in available
nine lung cancer cell lines (i.e., H1650, A549, HCC827, 95D,
Spc-A-1, H358, H23, H446, and H460 cells) and the BEAS-2B
cell line by qRT-PCR. qRT-PCR analysis revealed that the
levels of miR-19a and miR-19b-1 were significantly upregu-
lated when compared with BEAS-2B cells, and the expression
level of PTEN was downregulated in lung cancer cell lines
compared with BEAS-2B cells, suggesting a tendency that a
high level of miR-19 expression is correlated with a low level
of PTEN expression (Supplementary Figure S1). Therefore,
there is a negative correlation between miR-19 and PTEN in
lung cancer.

We further performed a luciferase reporter assay to
determine whether miR-19 directly targets the 3′-UTR of
PTEN in lung cancer cells. Transient transfection of wild-type
PTEN-luc reporter with miR-19a mimics into A549 cells
led to a significant decrease of luciferase activity compared
with the mimics control (Figure 4b), whereas transient
transfection of wild-type PTEN-luc reporter with miR-19a
inhibitor led to a significant increase of luciferase activity
compared with the inhibitor control (Figure 4b). These
observations suggest that PTEN is a direct target of miR-19 in
lung cancer cells.

To elucidate whether miR-19-induced EMT and miR-19-
enhanced cell motility and invasion were mediated by PTEN,
we silenced PTEN expression in A549 and HCC827 cells
using siRNA. Our results demonstrated that similar to the
ectopic miR-19 expression, siRNA-mediated knockdown of
PTEN induced EMT, migration, and invasion of A549 and
HCC827 cells (Figure 4c and d), suggesting that PTEN was
involved in miR-19-induced EMT, cell migration, and
invasion.

miR-19 Inhibited the Growth of Lung Cancer Cells
Undergoing EMT Induced by miR-19 Expression
It has been reported that miR-17-92 gene cluster is frequently
upregulated in human lung cancers, and improves the
proliferation of cancer cells.6 However, we observed that
A549 cells undergoing EMT induced by enforced expression
of miR-19 exhibited low proliferative potential (Figure 5;
Supplementary Figure S7), which was not consistent with
previous studies.1,5,10,29 Thus, this finding drove us to analyze
the proliferation and cell-cycle progression of lung cancer
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Figure 4 PTEN is involved in miR-19-induced EMT, cell migration, and invasion of lung cancer cells.(a and b) PTEN is a target gene of miR-19 in A549
cells based on the luciferase reporter assay. (c) Both miR-19 and siPTEN induced EMT-like cellular marker alterations, including reduced expression of the
epithelial marker E-cadherin and increased expression of mesenchymal marker vimentin. (d) Both miR-19 and siPTEN enhanced the migration and
invasion of lung cancer cells. Effects of miR-19 and siPTEN on cell migration and invasion were evaluated using the transwell chamber and Boyden
chamber assays, respectively. Both ectopic expression of miR-19 and knockdown of PTEN promoted the migration and invasion of A549 and HCC827
cells. EMT, epithelial–mesenchymal transition; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; UTR, untranslated region. *Po0.01.

Figure 5 Enforced expression of miR-19 inhibited the proliferation of lung cancer cells undergoing epithelial–mesenchymal transition. (a) Effects of
miR-19 on the proliferation of A549 cells were analyzed by the MTT assay. (b) Representative pictures of colony formation assay of miR-19-expressing
A549 cells. The colony formation ratio between miR-19-expressing A549 cells and vector-expressing A549 cells was determined to evaluate the effects of
miR-19 on the proliferation of A549 cells. (c) Representative histograms of cell-cycle distribution of miR-19-expressing A549 cells. (d–f) miR-19 inhibited
the growth of tumor caused by A549 cells in nude mice. (d) Representative picture of tumors in nude mice. (e) The growth curve of tumors in nude
mice. (f) BrdU staining of transplanted tumors at 7 weeks after subcutaneous transplantation of miR-19-expressing A549 cells. Tumor weight and miR-19
expression in the xenografts are shown in Supplementary Figure S4. (g) Hierarchical clustering of differentially expressed genes related to cell cycle and
cell proliferation in miR-19- and vector-expressing A549 cells. Right column lists the selected gene symbols, and the expression of genes related to cell
cycle and cell proliferation are shown in the heatmap. (h) The expression of genes related to cell cycle and cell proliferation in miR-19-expressing A549
cells was analyzed by quantitative reverse transcription-PCR. BrdU, 5-bromo-2′-deoxyuridine; H&E, hematoxylin and eosin; MTT, 3-(4,5)-dimethylthiahiazo
(-z-y1)-3,5-diphenytetrazoliumromide; OD, optical density. *Po0.01.
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cells undergoing EMT induced by miR-19. As demonstrated
in Figure 5a, the results of the MTT assay demonstrated that
miR-19 inhibited the growth of A549 cells undergoing EMT.

In addition, as shown in a colony formation assay, miR-19-
expressing A549 (Figure 5b) and HCC827 cells (Supple-
mentary Figure S7) exhibited much less and smaller colonies
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than vector-expressing cells. Compared with LV-con,
miR-19-expressing A549 cells exhibited increased percentage
of cells in the G1 phase and decreased percentage of cells in
the S-phase (Figure 5c). These results suggest that the growth-
suppressive effect of miR-19 was partially due to a G1-phase
arrest. In addition, we also observed that miR-19 suppressed
the growth of tumors derived from A549 cells in nude mice
(Figure 5d–f; Supplementary Figure S8).

To identify genes involved in the growth inhibition, the
mRNA levels of a number of cell-cycle regulators and
proliferation-associated molecules in A549 cells were exam-
ined by microarray and qRT-PCR (Figure 5g and h;
Supplementary Table S11). Microarray analysis revealed the
upregulation of GNG4, MXD1, BCAT1, E2F7, and DAB2 and
the downregulation of Betacellulin (BTC), Ets homologous
factor, epiregulin (EREG), E2F transcription factor 8, and
cell division cycle-associated 7-like (CDCA7L) (Figure 5g;
Supplementary Table S11). In addition, qRT-PCR results
demonstrated that the levels of E2F1, E2F2, CCNA2, and
CCNB1 were significantly decreased, whereas the levels of
tumor suppressor p21CIP1 was increased at least 3.5-fold by
miR-19 overexpression (Figure 5h). Unexpectedly, miR-19
increased the mRNA level of CDK6 (Figure 5h; Supple-
mentary Table S11), whereas the mRNA levels of cyclin-
dependent kinase 2 and 4 (CDK2, CDK4) and cyclin D1
(CCND1) remained unaltered by miR-19 overexpression
(Figure 5h). Therefore, overexpression of miR-19 in A549
cells undergoing EMT changed the expression of a number of
cell-cycle regulators and cell growth-related proteins.

In summary, miR-19 inhibited the growth of lung cancer
cells undergoing EMT through G1-phase arrest; however, the
detailed mechanisms are still not clear.

miR-19 Promoted the Survival of Lung Cancer Cells
Undergoing EMT Induced by miR-19 Expression
Cells undergoing EMT typically exhibit increased resistance to
apoptosis.30–34 Therefore, we evaluated whether lung cancer
cells undergoing EMT induced by miR-19 are more resistant
to cell death. The microarray results revealed the upregulation
of a number of anti-apoptosis genes such as BCL2-related
protein A1 (BCL2A1), chemokine (C–C motif) ligand 2
(CCL2), tumor necrosis factor, alpha-induced protein 3
(TNFAIP3), matrix metallopeptidase 9, tumor protein p53-
inducible nuclear protein 1 (TP53INP1), myeloid cell
leukemia sequence 1 (BCL2-related, MCL1), baculoviral IAP
repeat-containing 3 (BIRC3), and X-linked inhibitor of apop-
tosis (XIAP), and the downregulation of a number of
pro-apoptosis genes such as TNFRSF11A, BTC, CD24, cell
division cycle and apoptosis regulator 1 (CCAR1), and
caspase 4 (Figure 6a; Supplementary Table S12). All GO
terms representing biological processes listed in Figure 6b
were related to apoptosis, including anti-apoptosis, negative
regulation of apoptosis, induction of apoptosis, positive
regulation of apoptosis, and regulation of apoptosis. Further-
more, the results of the qRT-PCR assay of selected genes

including BCL2A1, XIAP, IL1RAP, IRAK2, TNFAIP3, IGFBP3,
and TNFRSF11A were consistent with the microarray data
(Figure 6c).

Next, we checked whether miR-19-expressing cells were
resistant to apoptosis induced by proapoptotic signal such
as TNF-α. Most vector-expressing A549 cells died within
16 h after TNF-α treatment; however, most miR-19-
expressing A549 cells survived with TNF-α treatment
(Figures 6d-1). Caspase-8 is specifically recruited to
death receptors and autoactivated to initiate the apoptotic
pathway. Accordingly, we found that TNF-α treatment
activated caspase-8 in vector-expressing A549 cells (Figure
6d-2). An approximately threefold decrease in the activity
of caspase-8 was observed in miR-19-expressing A549
cells after 16 h of TNF-α treatment compared with that of
vector-expressing A549 cells (Figure 6d-2). These results
suggest that the death of vector-expressing A549 cells was
induced by activation of the apoptotic pathway (Figure 6d-2).
As expected, the activity of the initiator caspase-8
correlated with that of caspase-3 (the effector) (Figure 6d-
2), suggesting that miR-19 overexpression prevented TNF-α-
induced death of A549 cells undergoing EMT. Therefore,
miR-19 enhanced the antiapoptotic ability of lung cancer cells
undergoing EMT.

DISCUSSION
Invasion and metastasis, the most significant features of
cancers, are commonly used as prognostic factors to evaluate
the survival of cancer patients. Therefore, understanding the
molecular mechanisms of cancer invasion and metastasis may
lead to the identification of novel therapy approaches against
cancers.19,27,28 Given that EMT has an important role in
cancer invasion and metastasis, we investigated the molecular
mechanisms of EMT in lung cancer cells, which may allow us
to identify key factors involved in cancer invasion and
metastasis.

It has been reported that miR-19 was dysregulated in
various cancers, and miR-19 upregulation strongly correlated
with gain of invasive and metastatic properties and poor
prognosis of patients with NSCLC,11–13 gastric cancer,14 and
esophageal squamous cell carcinoma.15 Moreover, the
expression of miR-19 was significantly higher in the less-
invasive breast cancer MCF7 cells than the more-invasive
MDAMB-231 cells, and the expression of a positive regulator
of tumor angiogenesis and metastasis was negatively regulated
by miR-19 in breast cancer cells,35 suggesting that miR-19
inhibited the metastasis of breast cancer. In osteosarcoma
cells, the expression of miR-19a was higher in metastatic LM7
cells with low expression of Fas than the parental nonmeta-
static SAOS-2 cells with high expression of Fas.36 Recent
studies have shown that miR-19a and miR-19b-1 promoted
the migration of cervical carcinoma cells16 and colon cancer
cells.17 In addition, it has been reported that miR-19a/b
facilitated the migration, invasion, and metastasis of gastric
cancer cells by targeting the tumour suppressor MXD1.14
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Furthermore, Fan et al.18 reported that miR-19b promoted
the migration, invasion, and metastasis of Hela, MCF7, and
Huh7 cells by targeting TP53. These studies strongly support

that miR-19 has a central role in cancer invasion and
metastasis by regulating different targets; however, the
underlying mechanisms are largely unknown.

Figure 6 miR-19 improved the survival of cancer cells undergoing epithelial–mesenchymal transition. (a) Hierarchical clustering of differentially
expressed genes related to apoptosis in miR-19- and vector-expressing A549 cells. Right column lists the selected gene symbols. The expression of
genes related to anti-apoptosis and pro-apoptosis are shown in the heatmap. (b) GO analysis of up- and downregulated genes related to apoptosis in
miR-19- and vector-expressing A549 cells. Genes with expression changes of higher than 1.7-fold and P-values o0.05 were identified and classified
using GO categories. (c) The expression of genes related to anti-apoptosis and pro-apoptosis in miR-19-expressing A549 cells analyzed by quantitative
reverse transcription-PCR. (d) miR-19 expression led to resistance to cell death of cancer cells induced by TNF-α. Vector- and miR-19-expressing cells
were treated with TNF-α (5 ng/ml) after pretreatment with cycloheximide (0.5 μg/ml) for 30 min to prevent the induction of the survival protein NF-κB.
(d-1) The cell cultures after 8 or 16 h of TNF-α treatment. (d-2) The activities of the death receptor-specific caspase-8 and effector caspase-3. The low
activities of both caspases in miR-19-expressing cells indicated the healthy appearance observed in d-1. GO, Gene Ontology; TNF-α, tumor necrosis
factor alpha. *Po0.01.
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EMT is a characteristic event in the invasion and metastasis
of various cancers.19,20 Increased evidence shows that
miRNAs are closely associated with EMT, invasion, and
metastasis of cancer.37–41 For e.g., let-7, miR-30a, miR-125a-
5p, miR-126, miR-183, miR-200, miR-21, miR-221, miR-222,
and miR-328 have important roles in EMT, invasion, and
metastasis of lung cancer.42–47 In this study, we found that
enforced expression of miR-19 (i.e., miR-19a and miR-19b-1)
in lung cancer cells A549 and HCC827 cells triggered EMT, as
shown by mesenchymal-like morphological changes, down-
regulation of epithelial proteins (e.g., E-cadherin, ZO-1, and
α-catenin), upregulation of mesenchymal proteins (e.g.,
vimentin, FN1, N-cadherin, or snail1), formation of stress
fibers, reduced cell adhesion, and enhanced cell migration
and invasion. In addition, DNA microarray results also
highlighted the expression of genes involved in EMT,
migration, and metastasis in miR-19-expressing A549 cells.
These observations suggest that miR-19 induced EMT, which
contributed to the invasion and metastasis of lung cancers.

Actin polymerization and depolymerization, which allow
cells to protrude at the anterior front, are prominent events in
cell movements to designated directions.48 Concurrently,
consecutive actomyosin contraction and separation from the
posterior end further drive cells to move.48 Actin polymeriza-
tion is also involved in the formation of stress fibers.48 There-
fore, dysfunction of actin polymerization leads to reduced
motility and invasion of cells.48 In the present study, our
results demonstrated that exogenous expression of miR-19 in
A549 and HCC827 cancer cells restored the formation of
stress fibers, suggesting that miR-19 regulated lung cancer cell
migration and invasion through promoting the formation of
stress fibers.

We also provided evidence supporting that PTEN was a
potentially functional target of miR-19 and was involved in
miR-19-induced EMT. Our results showed that miR-19
directly bound to the complementary sites of 3′-UTR of
PTEN (Figure 4a), and markedly decreased the protein level
of PTEN in lung cancer cells (Figure 4c; Supplementary
Figure S9B). It has been reported that loss of function or
downregulation of PTEN resulted in tumor metastasis, and
more aggressive growth behaviors of tumor, and/or poor
prognostic phenotypes.42,49–57 In addition, miR-19 upregula-
tion was observed in various cancers including lung cancer,
and correlated with tumor metastasis and/or poor prognosis
of cancer patients.11–15,18 Given that miRNAs primarily
function through inhibiting the translation of their
mRNA targets, we propose that miR-19 might be a negative
regulator for PTEN, which has been reported by other
researchers.10,29,58,59 In addition, miR-19 increased the
resistance to apoptosis of mouse B-cell lymphoma,10,29 and
chemoresistance of human breast cancer58 and gastric
cancer59 through directly repressing PTEN expression. These
studies further support our hypothesis that miR-19 inhibits
the expression of PTEN. Next, we continued to determine
whether miR-19 positively modulates EMT, migration, and

invasiveness of cancer cells in vitro via regulation of PTEN.
Increasing evidence supports that inactivation or down-
regulation of the tumor suppressor PTEN can trigger EMT
of cancer cells,60–63 which then promoted the invasion and
metastasis of various cancers including lung cancer.42,49–57 It
has been reported that PTEN negatively regulated the PI3K/
Akt pathway through the dephosphorylation of PI(3,4,5)P3,
and ultimately participated in the regulation of cell cycle,
proliferation, apoptosis, adhesion, and EMT during cancer
progress.63 In the present study, we found that PTEN silence
through RNA interference mimicked miR-19-induced EMT,
and promoted the migration and invasion of tumor cells,
which were similar as the results caused by miR-19
overexpression. Taken together, miR-19 triggered EMT and
improved the invasion and metastasis of cancer cells through
inhibiting the expression of PTEN.

Interestingly, we found that miR-19-overexpressing lung
cancer cells exhibited reduced proliferation and enhanced
survival during the process of EMT. It seems that the
proliferation inhibition of miR-19 in lung cancer cells is
inconsistent with its oncogene role.1,5,6,10,16,17,29 It has been
reported that EMT contributed to the invasion and migration
of tumor cells, and EMT was attributed to the metastatic
dissemination and the resistance of tumor cells to radio-
therapy, chemotherapy, and apoptosis.19,32,39 Tumor cells
undergoing EMT are typically found at the edge of tumors,
account for a small proportion of primary cancer, and
have low proliferative rates. Strong evidence suggests
that reduced proliferation cooperates with EMT to drive
cancer cells to reach their new destinations before efficient
proliferation.30–32,34,64,65 In addition, the products of
EMT-induced genes, such as Snail1,34 ZEB2/SIP1,65 and
Y-box-binding protein-1 (YB-1)32,64 exhibited strong anti-
proliferative activities by inhibiting the cell cycle of tumor
cells undergoing EMT, which is consistent with our results.
Previous studies and our results suggest that upregulation of
cell proliferation is important for the initiation and main-
tenance of primary tumors, while growth inhibition is crucial
for the invasion and migration of tumor cells.31,32,34,64,65

Taken together, the oncogene miR-19 can promote the
proliferation of tumor cells during the initiation and
maintenance of primary tumors, and induce EMT of tumor
cells to enhance tumor invasion and metastasis, suggesting
functional transition of miR-19 at different stages of tumor
development.

Resistance to apoptosis confers a selective advantage to
invasion and migration of cells during both embryonic
development and tumor metastasis.30–34 In addition, tumor
cells undergoing EMT are more resistant to apoptosis.30–34

Reduced proliferation may increase the resistance to apoptosis
of cancer cells undergoing invasion and metastasis.32 Anti-
apoptotic activity is another common feature of the genes
induced by EMT, such as Snail1,30,34,66 ZEB2/SIP1,31,39,67

YB-132,64 and miR-19 (the present study). Therefore, resis-
tance to apoptosis conferred by miR-19 provides a selective
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advantage to the invasion and migration of cancer cells. As
shown in Supplementary Figure S10, overexpression of
miR-19 led to the loss of epithelial markers, the expression
of mesenchymal markers, changes of cell shape, and the
acquisition of motility and invasive properties, and apoptosis
resistance of lung cancer cells.

In summary, we demonstrated that upregulation of miR-19
induced EMT and promoted the invasion of lung cancer cells,
but the roles of miR-19 in the metastasis of lung cancer cells
and the underlying mechanisms remain to be well investi-
gated in the future. In addition, enforced expression of
miR-19 resulted in reduced proliferation of tumor cells
undergoing EMT, which has not yet been reported in other
human cancers. These slow-growing, apoptosis-resistant, and
highly invasive lung cancer cells are likely insensitive to
therapeutic interventions that primarily target highly pro-
liferating cells. The underlying mechanisms remain to be fully
explored in the future. Interestingly, miR-19-expressing lung
cancer cells appear to possess several stem cell features,
including low proliferation rates and upregulation of the stem
cell markers CD133 and Bmi-1 (data not shown). Thus,
further investigations are necessary to determine whether
miR-19 reexpression and EMT inducers are associated with
cancer stem cell phenotypes.39

Supplementary Information accompanies the paper on the Laboratory
Investigation website (http://www.laboratoryinvestigation.org)
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