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Classification of malignant and benign tumors of
the lung by infrared spectral histopathology (SHP)
Ali Akalin1, Xinying Mu2,3, Mark A Kon2, Ayşegül Ergin3, Stan H Remiszewski3, Clay M Thompson3,4, Dan J Raz5 and
Max Diem3,6

We report results of a study utilizing a novel tissue classification method, based on label-free spectral techniques, for the
classification of lung cancer histopathological samples on a tissue microarray. The spectral diagnostic method allows
reproducible and objective classification of unstained tissue sections. This is accomplished by acquiring infrared data sets
containing thousands of spectra, each collected from tissue pixels B6 mm on edge; these pixel spectra contain an
encoded snapshot of the entire biochemical composition of the pixel area. The hyperspectral data sets are subsequently
decoded by methods of multivariate analysis that reveal changes in the biochemical composition between tissue types,
and between various stages and states of disease. In this study, a detailed comparison between classical and spectral
histopathology is presented, suggesting that spectral histopathology can achieve levels of diagnostic accuracy that is
comparable to that of multipanel immunohistochemistry.
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This paper introduces optical techniques developed during
the past 15 years that represent novel approaches and para-
digms for the diagnosis of cells and tissues, and are referred
to as ‘spectral cytopathology’ (SCP) and ‘spectral histo-
pathology’ (SHP), respectively. Early reports in these fields,
particularly in SCP, were fraud with instrumental artifacts
and misinterpretations1–3 of data and led to some exagge-
rated claims. However, in 1998 (ref. 4) and 1999,5 detailed
correlation with classical cytopathology and histopathology
led to the establishment of these techniques as viable
methods to aid in medical diagnostics.

SHP and SCP rely on objective spectroscopic measure-
ments, in conjunction with machine learning algorithms
(MLAs) for the classification of spectral data, to render a
medical diagnosis. The sensitivity and specificity of SHP
equal or surpass those of other recent improvements to
classical techniques, such as whole slide imaging,6 immuno-
histochemistry,7 imaging mass spectrometry, or gene-based
methodologies. Among the major advantages of SHP is the
ease with which it can be incorporated into the present
pathology workflow, its nondestructive nature, the minimal
sample preparation, the traceability and high spatial resolution

afforded by this technique, its sensitivity to tumor hetero-
geneity, and the fact that it is a completely reproducible,
quantitative, and objective method.

In this paper, we expand on the results of an SHP pilot
study that was reported in 2012 in this journal.8 This pilot
study, based on 80 patient samples in tissue micro-array
(TMA) format, represented the first successful attempt to
classify, by SHP, different cancer types, namely the most fre-
quently encountered lung cancers, small-cell lung carcinoma
(SCLC), squamous cell carcinomas (SqCCs), and adenocarci-
nomas (ADCs). TMAs were first used in SHP by the group of
Levin9 at the NIH. Here, we present results of a follow-up
study that included 80 samples that were judged cancer free,
308 patient biopsies from cancer patients, and 61 samples of
benign lung tumors. The classification goals were extended to
include the classes enumerated above, in addition to necrotic
tissues from these three cancer classes, as well as ADC sub-
types and grades of SqCC, and four classes of nonmalignant
lung lesions.

Since the publication of the pilot study in 2012, the
experimental methods have been refined substantially and
the methods of analysis have been augmented to include
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more sophisticated statistical tools. Some of the (spectro-
scopic) experimental procedures and the statistical methods
and results have been summarized in two recent papers.10,11

Furthermore, a detailed analysis of the biostatistical signifi-
cance of the results was carried out, and their confidence
intervals have been established.12

Next, a short introduction to methods referred to in the
past as ‘optical diagnosis’ will be presented. Optical and
spectrometric methods are commonplace in histology and
pathology. After all, staining tissues by hematoxylin/eosin
(H&E), followed by (visual) microscopic examination is an
optical method: different compartments of the cell respond
differently to basophilic and eosinophilic stains and thus
allow a ‘spectral analysis’ using the eye as a detector. Whole
slide imaging, introduced in other contributions in this issue
of Laboratory Investigations, is another optical method, but is
not based on ‘spectral analysis’ per se but on morphometric
criteria. Immunohistochemistry, to date the most advanced
optical method to detect the presence of certain cancer sig-
natures or markers,7,13 uses optical detection of specific
antibodies labeled with easily observable stains. However,
neither of these techniques use an inherent, spectral property
or ‘spectral fingerprint signature’ of the tissue.

Imaging mass spectrometry, reviewed in this issue of
Laboratory Investigations as well, is more akin to SHP in that
a ‘vector’ of information is collected from each pixel of tissue.
In mass spectrometric methods, this vector contains inten-
sities (abundances) of molecules as a function of mass to
charge (m/e) ratios, whereas in SHP a ‘spectral vector’
fingerprint of infrared absorption intensities vs wavelength
of absorbed radiation of all biochemical components in the
pixel is observed. Mass spectrometric measurements offer
more specific information on protein up- and downregula-
tion, whereas the infrared spectrum offers a survey of all
changes (including metabolomics and genomic variations) in
biochemical composition between individual pixels from
which spectra are collected and which are smaller than the
size of an individual cell. Furthermore, SHP can be per-
formed on standard, untreated histological sections, either
from formalin-fixed, paraffin-embedded (FFPF) tissue blocks
or from flash-frozen tissue sections.

SHP is based on the observation of inherent spectral sig-
natures (as opposed to any external stains or labels used to
treat the sample) of cellular components.14 The paradigm for
SHP is that the transition from normal tissue to diseased
states is accompanied by changes in the overall biochemical
composition of the tissue, along with well-known changes in
cellular morphology and tissue architecture. These changes in
biochemical composition are encoded and observed via
changes in the infrared spectra. These changes are manifested
mostly in the complicated envelope of the amide I vibration
and, therefore, reflect changes in the proteome of cancerous
cells. In addition, changes in metabolic activity of cancerous
cells are readily observed in the infrared spectra and manifest
themselves mostly by a marked decrease in intercellular

glycogen. Furthermore, increased RNA abundance in the
cellular cytoplasm is observed for actively dividing cell.15 The
combination of all spectral changes because of variations in
the genome, proteome, and metabolome is analyzed by self-
learning algorithms (MLAs) similar to those used in other
approaches to automatic analysis of large data sets.

We believe that SHP can aid in the accurate classification
of cancers that are difficult to distinguish on a morphological
basis alone, and whose accurate diagnoses determine ther-
apeutic options. This paper follows similar studies reported
in this journal in which equivalent methods for the analysis
of exfoliated cells were reported, using a methodology
referred to as SCP. SCP has been proven to be capable of
reliably distinguishing dysplastic from normal cells and can
detect abnormality even in cells that still present normal
morphology.16–18 This could have clinical utility in identi-
fying precancerous states within current models of cancer
evolution19 and may also differentiate between synchronous
and metachronous cancer development, specifically in lung
cancer.20,21

MECHANISM OF ACTION OF SHP
The mechanism of action of SHP can be understood from the
biophysics and spectroscopic properties of the biochemical
components of cells. All molecules—whether small inorganic
or very large biochemical ones—respond to infrared radia-
tion in a predictable and thoroughly understood manner:
infrared radiation is absorbed by molecular vibrations at
specific infrared ‘colors’ (wavelengths) to produce relatively
complicated ‘infrared spectra’ that are specific ‘fingerprints’
of the molecules. Infrared spectra collected form an in-
dividual cell, or a tissue pixel, thus are a superposition of all
molecules’ individual fingerprints spectra.

Infrared spectral features of biomolecules are affected by
the conformation (shape), hydration, oxidation state, and
many other physical effects. For proteins, for example, it is
well known that the same protein can exhibit different
infrared spectral patterns when the protein is found in dif-
ferent secondary or tertiary structures, that is, when it is
denatured, precipitated, or hydrated/dehydrated. In apoptosis
and necrosis, proteins unfold from their native conforma-
tion; the partially unfolded proteins tend to form aggregates
of mostly b-sheet structures and tend to precipitate, or
become insoluble. The change from native protein structure
to the unfolded aggregates causes a large change in the
infrared spectral patterns. Consequently, SHP is a highly
sensitive tool to detect necrosis.

Other spectral markers of disease that can be detected by
SHP may have to do with changes in the metabolome, or
changes in lipids or mucous, and so forth. Such changes are
observed in several regions of the infrared spectra: for
example, carbohydrate metabolites and glycoproteins such as
mucin have vibrations well separated from those of the
protein backbone. Of all these signatures, the changes in
the protein spectral region are the most significant for SHP.
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This is, in part, because of the fact that proteins are by far the
most abundant cellular components and comprise B65% of
the dry weight of cells and tissues. Furthermore, changes in
protein composition tend to alter the spectral pattern
observed in the protein-specific bands in the infrared spectra.

In particular, the ‘amide I’ vibration of proteins, observed
at B1650 cm� 1 (6.06 mm) in the infrared spectrum, is the
most sensitive indicator of protein structure. In the spectral
plots shown in Figure 1, the amount of light absorbed (the
‘absorbance’) is plotted on the ordinate axis against the
inverse of the wavelength (or ‘wavenumber’), measured in
reciprocal units of length, such as cm� 1. The spectral region,
marked in Figure 1 as ‘protein amide I’, exhibits similar
spectral features shown for the three tissue types shown in
Figure 1, but quite different features for the four major
protein conformations, a-helical, b-sheet, turns, disordered,
and other helical structures. This conformational sensitivity
is due to long-range dipolar coupling of individual peptide
linkages (mostly the C¼O bond stretching motion of the
peptide linkage) that produces highly delocalized vibrational
states (known as ‘exciton’ states) that are sensitive to changes
in the geometry of proteins.

Figure 1 depicts typical infrared spectra of several different
tissue types. The top trace is from the superficial layer of
squamous tissue that is known to accumulate glycogen that

exhibits three sharp absorption peaks between 1000 and
1200 cm� 1 because of C–O stretching and C–O–H deforma-
tion motions. These peaks are superimposed on the protein
spectral signatures, consisting of the ‘amide I’ and ‘amide II’
regions, and a few peaks due to protein side groups.

The middle trace of Figure 1 depicts an infrared spectrum
of connective tissue that is dominated by the spectral features
of collagen,22 a triple-helical protein of repeating Pro-Pro-Xxx
sequences. Collagen exhibits a very characteristic infrared
absorption pattern in the 1000–1250 cm� 1 spectral region
that can further be enhanced by converting the spectra to
second derivatives (see below). Finally, the bottom trace
shows the infrared signature of metabolically highly active cells
such as B lymphocytes that exhibit distinct nucleic features in
addition to the protein peaks observed in the other traces.23

In general, the spectral differences between tissue types are
much smaller than the extreme cases shown in Figure 1, and
require mathematical procedures for detection and inter-
pretation. With the exception of necrosis mentioned above, it
is unlikely that large conformational changes occur within a
cell when it transitions from normal to cancerous states.
However, the abundance of proteins with different structural
motifs certainly will change, as proteomic studies have
revealed, and this change in overall protein composition is
sampled by infrared spectroscopy.

In order to enhance the sensitivity of the spectral mea-
surements, the observed spectra are converted to their second
derivatives; this process collapses the width of the peaks and
enhances the appearance of shoulders and deflections (see
‘Spectral preprocessing and segmentation’ section). In this
manner, minute changes in protein composition can be
detected. These compositional changes, in general, cannot be
linked to the up- and down-regulation of a single protein by
infrared spectroscopic method, but they rather manifest
themselves by changes in the spectral envelopes that contain a
snapshot of the total cellular composition, and changes therein.

Thus, SHP provides an integrated view of the averaged
compositional change in a cell or tissue spot, in separate
spectral ‘bands’ for proteomic, metabolomics, and genomic
changes. The spectral changes between normal tissue types
and between normal and cancerous tissues need to be
decoded in order to utilize spectral information as class
indicators. In principle, this can be accomplished by several
approaches. One could define, for example, cancer reference
spectra by selecting regions with unambiguously defined
cancer types, and classifying any unknown sample spectrum
by comparing it successively against all cancer reference
spectra. The reference spectrum with the agreement would
determine the classification result. Another approach used in
earlier reports decomposed the observed spectra into com-
binations of a few ‘basis spectra’, such as several proteins,
nucleic acids, sugars, etc. This method has the disadvantage
that the omission of a reference compound spectrum in the
spectral decomposition can produce unpredictable and erro-
neous results. In another approach, favored in the research

Figure 1 Examples of mid-infrared spectra of different tissue classes.

Top: superficial squamous tissue; middle: fibroconnective tissue; bottom:

B lymphocytes. The three spectra are offset along the absorbance (Y) axis

for clarity. From Bird et al.8
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reported here, self-learning mathematical algorithms are
trained to find recurring spectral changes and associate them
with disease. This approach will be described in the section
below. This method has the advantage that these algorithms
scan the training spectra for significant spectral differences
that are correlated with the desired outcome. Spectral regions
of low correlation with the outcome are ignored. By carefully
training these algorithms, and applying established rules of
machine learning and bioinformatics, highly reliable and
reproducible algorithms can be established.

EXPERIMENTAL ASPECTS (MATERIALS AND METHODS)
Sample Selection
The samples for this study were derived from commercial
TMAs especially prepared for this work. In addition, samples
of benign lung tumors were derived from the archives of the
Department of Pathology, University of Massachusetts Medical
School, under a local IRB. All samples were from FFPE tissue
blocks. The TMAs were assembled to accommodate the goals
of this study that include:

(1) Distinction of normal (NOR) from cancerous and ne-
crotic lung tissue,

(2) Classification of lung cancers into SCLC and non-small-
cell lung cancer (NSCLC),

(3) Further classification of NSCLC into ADC and SqCC,
(4) Classification of ADC into several subclasses of clinical

relevance, and
(5) Distinction of benign lung lesions from normal tissue

and from cancerous lesions.

For the first four of these goals, six TMAs were assembled
that contained the samples summarized in Table 1.

From each TMA, three tissue sections were purchased,
referred to as section A001, A002, and A003. Section A002
was mounted at Biomax on a standard microscope slide,
de-paraffinized, stained, and coverslipped. The other two

sections were mounted on ‘low-e’ slides (see the section
‘Infrared and visual image acquisition’) and delivered as
paraffin-embedded samples. Each tissue spot measured
B1.8mm in diameter, and will be referred to as ‘patients’
later in this report.

The benign lung lesions were not in a TMA format, but
were standard excised tissue specimens presented as FFPE
tissue sections and often measuring in excess of 1 cm2. The
diagnosis of these samples was based on pathology reports,
and confirmed by the study pathologist. With these benign
samples, the entire patient number was 449.

Infrared and Visual Image Acquisition
The methods of SHP, including data acquisition and data
preprocessing, have been described in detail in the litera-
ture.24,25 All spectroscopic studies reported here were carried
out on ‘low emissivity’ (low-e) slides (Kevley Technologies,
Chesterfield, OH, USA) that are reflective toward infrared
radiation, but are nearly totally transparent to visible light.
The use of these sample substrates has been discouraged by
some authors,26 citing the distortion of spectral intensities by
the standing electromagnetic wave that forms when radiation
is reflected from a metallic surface. Subsequently, the effect of
the standing wave on the observed spectra was analyzed by
Wrobel et al.27 and found to be much smaller than originally
reported when microscope objectives with large numeric
apertures are used; in addition, using the second derivative,
rather than the absorption intensities, can further reduce the
intensity distortions.10

As the same tissue section was used for both infrared and
white light imaging (after appropriate staining), the visible

Figure 2 Schematic of the hyperspectral data set collected for each

tissue sample (from Diem et al.11).

Table 1 Composition of the data set used in this study

Biomax Number
description

No. of
patients

Comments

LC 701 Normal 80 Cancer-adjacent normal, biopsy

free of cancerous cells

LC702 Necrotic 29 From SCLC, SqCC, and ADC

LC703 SCLC 61 Some patients from LC811

LC704 SqCC 89 Some patients from LC811

LC705/6 ADC 129 Mucinous and nonmucinous

Organizing pneumonia 18 Benign tumor

Sarcoidosis (granuloma) 18 Benign tumor

Hamartoma 18 Benign tumor

Meningothelial nodules 7 Benign tumor
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and infrared images could be accurately registered. This is
necessary for annotation (see the section ‘Annotation and
data traceability’) of spectral features. Slides for spectral data
acquisition were deparaffinized using standard procedure28

and kept in a desiccator when not used.
Infrared spectral images were acquired as ‘hyperspectral

data sets’ or ‘spectral hypercubes’ as shown in Figure 2.24

Conceptually, each tissue sample is divided into thousands of
individual pixels, measuring 6.25 mm on edge. From each
pixel, an entire infrared spectrum is collected in a wavelength
range between 2.5mm (4000 cm� 1) and 14.28mm (700 cm� 1).
Thus, the raw spectral hypercube for a 1.8mm diameter
tissue spot consists of nearly 100 000 pixel spectra, each
containing 1650 intensity data points at constant abscissa
spacing of 2 cm� 1. Of these spectral vectors, the ‘fingerprint’
region between 800 and 1800 cm� 1 was used for tissue classi-
fication. The region below 800 cm� 1 contains only weak
transitions in the infrared spectra and is difficult to access
because of the detector wavelength cutoff. The region between
1800 and 2800 cm� 1 is devoid of any useful transitions.
The C–H and N–H stretching region between 2800 and
3500 cm� 1 can be used for analysis as well but provides less
information on the proteome of cells and tissue than the
amid I manifold in the fingerprint region.

Infrared spectral hypercubes for each tissue spot were
collected using a PerkinElmer (Shelton, CT, USA) model
SpectrumOne/Spotlight 400 imaging infrared micro-spec-
trometer. This instrument incorporates a 16-element cryo-
genically cooled infrared HgCdTe detector array; thus,
spectra from 16 pixels were collected simultaneously. Data
acquisition and storage required B1 h for each tissue spot.
The entire instrument, including the optical path of the
microscope, was purged with dry (� 401 dew point) air to
reduce atmospheric water vapor interferences.

After infrared data acquisition, the tissue sections were
stained at the Department of Pathology at the University of
Massachusetts Medical School, using H&E and following
standardized and validated methods. After coverslipping, the
tissue sections were imaged using an Olympus (Center Valley,
PA, USA) BX51 microscope equipped with a computer-
controlled microscope stage with linear stepping motors
(0.1 mm resolution). Images were taken via a Qimaging
(Surrey, BC, Canada) model QICAM high resolution digital
camera. The microscope was operated using Media Cyber-
netics (Rockville, MD, USA) Image Pro Plus software. The
tissue spots were imaged at � 20 magnification, producing
large mosaic visual image data files at sufficiently high spatial
resolution for pathological interpretation. Registration of the
slide position for visual and infrared microscopy was aided
by mounting the slides in a specially designed and manu-
factured slide holder that was equipped with three reticles
whose positions in the particular microscope table were
read and recorded at 0.1 mm accuracy. Summaries of data
acquisition procedures and protocols have recently been
published.10,29

Spectral Preprocessing and Segmentation
Each tissue spot produced B105 individual pixel spectra that
were preprocessed as follows. First, the size of hyperspectral
data cubes was reduced by a factor of four by co-adding four
individual pixel spectra into a new spectrum with better
signal-to-noise ratio, but larger pixel size, 12.5 mm on edge.
This step was deemed necessary when these studies were
carried to reduce computation time of the hierarchical cluster
analysis (see below). Furthermore, the spatial resolution of the
microspectrometers was found to be B12 mm at 1000 cm� 1;
thus, the averaging process did not result in a loss of spatial
resolution.

The resulting set of B25 000 pixels per tissue spot was
corrected for confounding contributions such as noise, water
vapor, and resonance Mie (R-Mie) scattering (via a phase
correction algorithm30) using procedures developed and
reported previously in the literature.10 In order to enhance
the sensitivity of spectral methods toward specific changes of
protein abundance, the broad and often unstructured raw
spectra were converted to second derivatives. This process is
known to reduce the half width of spectral bands, thereby
providing better discriminatory power that provides for the
ability to classify different tumor types. Second derivative
spectra are also less susceptible to the standing wave artifact
as they depend on the curvature of a peak, rather than its
intensity. The second derivative spectra are the primary
information obtained in an SHP experiment, and the task at
hand is the decoding and correlation of the spectral informa-
tion with the pathological diagnosis. Details of these
preprocessing procedures have been reported previously.10

The preprocessed hyperspectral data sets for each of the
tissue spots were subsequently converted to pseudocolor
images by hierarchical cluster analysis (HCA). This is a
well-known method to extract recurring patterns in data
sets;31 in this particular application, HCA was used to
segment the data set into groups of high spectral similarity
and homogeneity, and to present these groups as pseudocolor
displays. Typical HCA-based pseudocolor images of tissue
spots are shown in Figure 3 (middle column), whereas the
left column shows the corresponding visual image of the
stained tissue spot. In the HCA images in the middle column,
regions of the same color represent similar spectra. Visual
inspection of Figure 3 immediately reveals a spatial corre-
spondence between the IR pseudocolor image and the H&E-
stained image. This correspondence becomes even more
obvious at higher magnification of the visual image: Figure 4
shows a magnified view of the ADC sample shown in the top
column of Figure 3. Here, the red regions in the infrared
pseudocolor map represent tissue areas richer in connective
tissue that appear pinkish in the H&E-stained visual image.
These red areas were excluded from the ADC tissue class in
the annotation step, see below.

It should be noticed that the presegmentation step
described above is completely unsupervised in the sense that
it does not requires any input from a pathologist. The HCA
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Figure 3 Images of H&E-stained tissue spots (left column), 3-cluster infrared pseudocolor images (middle column), and annotated regions (right

column, see text) of tissue spots with ADC and necrosis (top row) and SCLC and necrosis (bottom row).

Figure 4 Higher detail images of ADC sample shown in Figure 3. (Left) Microscopic image of H&E-stained tissue; (right) infrared image from HCA.
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images represent the inherent ability of infrared spectral
imaging to detect differences in tissue composition by the
spectral signatures. At this point, no diagnostic information
is available from the infrared images; in order to achieve
diagnostic and/or prognostic capabilities, regions of clearly
defined normal tissue types and disease states need to be
identified from the images shown in Figure 3. Subsequently,
spectra associated with these regions are extracted and
entered into a database from which algorithms are trained to
associate spectral features with pathological diagnosis. This
step is referred to as ‘annotation’, described in the section
‘Annotation and data traceability’ below. Subsequently,
unknown data sets can be analyzed for the occurrence of the
disease-specific spectral signatures.

Annotation and Data Traceability
The annotation process correlates unambiguously assignable
tissue areas from the H&E-stained visual images with cor-
responding regions of the pseudocolor infrared image, and
permits extraction of the spectra from the selected regions in
the infrared images (Table 2). To this end, a semitransparent
overlay of the visible and infrared images was created auto-
matically, using image registration methods, such that the
tissue features still can be perceived, but are displayed on a
color background that corresponds to the HCA clusters. This
can be performed equally well for the tissue microarray spots
or the large biopsy tissue sections. Within an HCA cluster, a
pathologist selected areas that represented, in his opinion, the
most typical histological regions of a diseased or normal
tissue type. Each area was tagged with a code that identified
disease state or tissue types. This is shown in the right col-
umn of Figure 3. Here, the regions that represent ADC and
were selected by the pathologist are shown in purple, whereas
the selected necrotic tissue regions are shown in green. In the
SCLC sample, the annotated SCLC regions are shown in
yellow. The annotation software ascertains that each con-
tiguous area selected by the pathologist corresponded to one
HCA cluster only, and eliminates pixels that did not conform

to the majority assignment within one selected area. The
number of selected areas in Figure 3 is typical for an anno-
tated tissue spot, and yielded, on average, B1400 pixel
spectra for each tissue spot, corresponding to B350 cells.
This later assessment was based on an estimate of a cell’s size
(B25 mm in diameter) and the aggregated pixel size (12.5 mm
on edge).

In the data set of B550 000 annotated pixels (see Table 2),
each pixel spectrum is uniquely defined and traceable to the
tissue microarray name (eg, LC706), the particular section,
the individual tissue spot identified by row and column
(eg, C3), and the coordinate of the pixel spectrum. This
coordinate is uniquely defined by the pixel X, Y address, and
the pixel size. The pixel X, Y address was referenced against
the reticle positions in the slide holder. Each annotated pixel
spectrum, in addition, was tagged with a code that identified
the pathology diagnosis. Thus, any pixel spectrum can be
relocated and traced, and may be compared with the corre-
sponding region of the visual image that was used for an-
notation.

The predominant diagnosis from the annotating patho-
logist, in general, agreed with the diagnosis obtained
from Biomax. The annotation yielded pixel spectra in over
160 classes that were subsequently combined into 26 major
tissue types/disease classes by similarity analysis, using
graph partitioning methodology. These graphs clearly de-
monstrate which of the classes were so closely related that
they could be combined into larger groups by minimizing the
connection between classes. These groups were referred to as
group A (10 normal tissue types); group B (necrotic ADC,
necrotic SqCC, and keratin pearl); group C (SCLC and ne-
crotic SCLC); group D SqCC (3 grades) and group E ADC (8
subtypes).

Computational Aspects
All computations were carried out on a Dell workstation
equipped with a 12-core Intel processor and 56-GByte
memory, running 64-bit Windows operating system. This
workstation was connected to a server with 20 TByte hard
drive space and cloud backup. All computations were carried
out in MATLAB version R2013.b (The Mathworks, Natick,
MA, USA) using scripts developed in-house. The scripts and
input data sets are archived for each of the ‘studies’ carried
out, where each study was defined by a distinct aim, result
and contributing data subsets.

The statistical and computational procedures developed
and utilized were described in a previous paper.12 In the work
described therein, efforts were reported that detailed the
composition, in terms of patients and pixel spectra, of the
training and validation data sets, the metrics used for the
evaluation of the quality of the diagnostic results, the type of
MLAs, the number of pixels per patient to be included in the
training phase, the number of spectral features (data points
per spectrum) included in the analysis, and a measure of the
power and confidence interval of the classification. This

Table 2 Number of pixel spectra, processed spectra, and
annotated spectra in entire TMA data set

Total spectra: B 39� 106 (388 spots, B100 000 spectra

per spot)

Processed spectra: 4� 106 pixel spectra (2� 2 pixel averaging

and elimination of blank pixels)

Annotated spectra: 5.5� 105 spectra

Annotation regions: 9.3� 103 annotation regions

Annotation regions/spot: 24 Regions/spot (average)

Pixels /annotation region: 60 Pixels (average)

Main tissue types: 168 (54 malignant, 114 normal classes)
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paper also reported the reasons why support vector machines
(SVMs)31,32 were eventually chosen for MLAs. The SVM-based
classification was carried out in a ‘pixel-based’, a ‘patient-
based’, or ‘image-based’ manner, to be discussed later.
Furthermore, a ‘multi-classifier’ vs a step-wise hierarchical
decision tree approach was investigated, and the choice was
made in favor of the multiclassifier algorithm that separated
the samples into normal, necrotic, SCLC, SqCC, and ADC
classes in one step.

The most salient features of final algorithm and procedure
utilized are summarized below:

� SVMs were used for the classification task because of their
high reproducibility and more easily understood mode of
action.

� The entire spectral vector of 501 2nd derivative data points
(spanning the range from 800 to 1800 cm� 1) was used for
classification. The range below 800 cm� 1 did not contri-
bute to the overall accuracy and was ignored. Feature
selection (ie, eliminating certain spectral features in the 800
to 1800 cm� 1 range) reduced classification accuracy and
was not implemented.

� A total of 2000 pixel spectra per disease or tissue type class
were selected randomly for algorithm training. The classi-
fication accuracy did not improve by using more pixel
spectra, but the computation time increased significantly. If
there were o2000 spectra in one of the classes, ‘over-
sampling’ was applied: in oversampling, spectra were
repeatedly used in the training set, rather than reducing the
number of spectra in the larger classes (‘undersampling’).33

� The final SVM utilized a radial kernel or basis function
(rbf). Two parameters, ‘c’ (penalty weight on misclassi-
fication error) and ‘g’ (width of the radial basis kernel)
were optimized by varying them independently from
0.000061 (2� 14) to 0.031 (2� 5) for g and 0.0625 (2� 4) to
32 (25) for c.32 This resulted in an optimized SVM that
yielded an accuracy of 92.4±0.85% for a benchmark data
set consisting of B190 500 training spectra and 48 600 test
spectra in the five major classes listed above. As indicated in
the bullet point above, 10 000 spectra were randomly
selected from these data sets; repeated training/test
processes yielded results that were found to lie within the
expected confidence interval limits (see below).

The 95% confidence intervals (CIs) were computed as
follows. Ten independent SVM training and test runs were
carried out by randomly selecting 10 000 training spectra
from the entire training data set. These 10 000 training
spectra were selected from the five classes of interest (NOR,
NECR, SCLC, SqCC, and ADC) with 2000 spectra per class.
Increasing the number of spectra per class did not improve
the classification accuracy.12 The number of patients con-
tributing to the 2000 spectra was varied from 30 to 135 but
the size of the training set was held constant at 10 000. The
results of this simulation are shown in Figure 5. The overall
accuracy increases, as expected, as the number of patients in

the training set increases, from B85 to over 90%, and the
scatter in the accuracy for 10 independent runs decreased by
a factor of B5. The CIs were also obtained by analytical
methods and agree very well with the simulations.12

The results of this simulation also suggest that the anno-
tation method described earlier that often yields hundreds or
thousands of individual pixel spectra for each annotated spot
produces a representative sampling of tissue homogeneity
and patient-to-patient variance. This is in contrast to other
cancer diagnostic methods that yield one data point per
patient, whereas in SHP thousands of data points are created
for each patient.

Finally, the data were analyzed using both standard SVMs
and probability-based Platt-SVMs.34 In the latter, the
classifier reports probability limits (eg, 0.1 and 0.9) that a
pixel belongs with 90% probability to class A, whereas a pixel
with o10% probability most likely belongs to class B (with
90% probability). Pixels between 0.1 and 0.9 probability are
considered ‘unclassifiable’. This approach reduces the total
number of classified pixel spectra, but increases the pro-
bability that those remaining were classified correctly.

RESULTS AND DISCUSSION
Overall Goals
The overall goals of the study presented here were the reliable
distinction between normal (NOR) and diseased tissue, the
distinction between necrotic (NECR) and cancerous tissue
and between SCLC and NSCLC. Furthermore, the latter ca-
tegory was to be distinguished into SqCC and ADC that
themselves had several grades and/or subclasses.

In a previous lung cancer pilot study, we used hierarchical
binary classifiers based on artificial neural networks to con-
secutively classify and remove the most different spectral
classes in the data set and arrived at good classification
accuracies.8 The much larger data set reported here, analyzed

Figure 5 Simulation of accuracy and confidence interval as a function of

patient number in the training set. Each symbol in the graph represents

one training/test result for 10 000 pixel spectra randomly selected from

the number of patients indicated.
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by SVM, yielded accuracies somewhat lower than those
reported earlier, mostly because the larger data set increased
the heterogeneity of the data substantially, and because a new
class—necrosis—was added to the classification. Necrosis
does present a problem, in particular in necrotic SCLC
samples, as the occurrence of the two disease stages appears
to be coupled, and the samples often contained mixtures of
the two classes.

The heterogeneity within the spectral classes can be
appreciated by inspection of Figure 6 that represents a
principal component analysis (PCA) ‘scores plot’ for all
spectral vectors in a given spectral class (left panel), and the
same information represented by the 95% confidence ellip-
soids for each patient, and the center of the ellipsoid. Clearly,
for this class, one patient exhibits quite different spectral
features as compared with the other seven patients. It is not
clear, at this point, whether the one outlying patient
represents a slightly different disease profile that is detected
by SHP or whether the annotations placed two different
disease stages into the same class.

Aside from eliminating pixel spectra with poor signal-to-
noise ratio (shown as the black regions in the HCA plot of
Figure 4), all spectra were included in training and validation
subsets, with the following caveat: we required that at least
three patients and 400 pixel spectra were represented in a
tissue class before it was allowed to be analyzed.

In order to report sensitivity and specificity, the SHP
results needed to be correlated against a gold standard, in this
case, classical histopathology. Thus, only annotated pixel

spectra could be used for the evaluation of the accuracy of
SHP. This reduced the number of pixel spectra that could be
included in this study to B550 000, as shown in Table 2. Of
these 550 000 annotated pixel spectra, 219 422 from 173
patients were in the training set and 256 729 from 196
patients were in the test set. Of these pixel spectra, 216 767
were in the 26 subtypes for which sufficient patients/pixels
were represented in the classes (see the criteria above) and
246 725 in the test set (see Table 3). It should be noted that
spectra in both the training and test set were from annotated
regions; that is, data from the blinded test set had been
processed and annotated as described before. However, these
data were never used in the training process of the classifi-
cation algorithm to avoid overfitting of the data. The blinded
data sets needed to be processed and annotated as well in
order to allow the accuracy of the classifier to be assessed.

Three different approaches were used to analyze this data
set. One approach is referred to as a ‘pixel-based’ test in
which the algorithm was trained, as indicated above, with
2000 pixel spectra from each of the 26 subgroups that fall
into the five major classes of tissue types (groups A–E) listed
at the end of the section ‘Annotation and data traceability’. If
the number of spectra in one of the 26 tissue classes was
o2000, an oversampling strategy was applied as described in
the discussion of the final algorithm above. This test samples
the global agreement of all annotated areas from patients in
the test set with the diagnosis rendered by the annotating
physician.

The second approach of analysis is referred to as ‘full spot
test’. In this test, the agreement between the SHP diagnosis
and the whole spot diagnosis from Biomax was determined.
Here, the criteria were set such that the predominant SHP
cancer prediction had to agree with the Biomax pathology
diagnosis, and that at least 400 pixels (100 cells) had to be
detected by SHP to conform to this diagnosis. Thus, this test
ascertains that SHP does not miss a cancerous sample, and
properly diagnoses the major cancer type.

The final approach was an image-based representation of
the results from the ‘full spot test’, in which the agreement

Figure 6 (Left) PCA scores plot of all spectral vectors in one tissue class. Each symbol represents on pixel spectrum. (Right) Same plot, represented by

95% membership contour and ellipsoid center for each patient.

Table 3 Summary of training and testing data sets

Number
of patients

Number of
annotated pixel

spectra

Number of annotated
pixels in 26 major

classes

Training 173 219 422 216 767

Test 196 256 729 246 725
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between the annotated regions for each patient sample was
compared with the SHP prediction via a ‘label image’, dis-
cussed in the section ‘Label images’.

Pixel-Level Test
This test was carried out 10 times, with different random
selection of 52 000 training spectra in the 26 subgroups. The
balanced accuracy, established by using each training model

to classify the spectra in the test set, varied by o1% for the
consecutive runs, indicating that the training spectra sampled
the variance in the data set adequately. The results of the 26
subgroups were subsequently combined into the major five
classes shown in Table 4.

The average of the balanced accuracy classification is
87.2%. As pointed out before, the major source of disagree-
ment is the classification of necrosis that has a low sensitivity,
particularly in the case of samples with SCLC and necrosis,
where SHP diagnosed many necrotic pixels as SCLC. This
brings up the question of how sharp the distinction between
necrosis on one hand and SCLC with necrosis on the other
can be drawn in solid tumors for which the interior can
exhibit serious hypoxia.

The average balanced accuracy could be improved
substantially by implementing the Platt-SVM approach
introduced earlier. By eliminating low probability pixels (by
raising the Platt threshold to 0.75), the balanced accuracy
could be improved from 87.2% to over 91%, while reducing
the number of classified pixels from 256 729 to 202 579
(an 18% reduction of the pixel number). When the Platt

Table 4 Pixel-based sensitivity, specificity, and balanced
accuracy for test data set

Class Sensitivity Specificity Balanced accuracy

Normal 98.0% 97.2% 97.6%

Necrosis 78.8% 83.9% 81.4%

SCLC 95.9% 82.8% 89.4%

SqCC 83.2% 86.0% 84.6%

ADC 82.2% 84.0% 83.1%

Figure 7 Partial results of the whole spot analyses described in the section ‘Full spot test results’ (see text for detail). (a) Normal samples, (b) small cell

carcinomas, (c) squamous cell carcinomas, and (d) adenocarcinomas.
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threshold was raised to 0.9, the balanced accuracy improved
to 93.2%, with a concomitant reduction of the diagnosed
pixels to 191 608 (a 22.4% reduction of pixel number). The
lower probability pixels are mainly because of two causes: low
signal-to-noise data at the edges of tissue and low patient
number in some of the tissue subclasses that reduced the
statistical significance of the spectral analysis.

Full Spot Test Results
There was a total of 188 patient samples in the full spot test
set after removing some duplicate tissue spots from the same
patient. As pointed out before, this test required that the
major diagnostic category from the Biomax diagnosis was
properly reproduced, with at least 400 pixels agreeing with
this diagnosis. Figure 7 summarizes results from some of
these analyses: because of the large size of the overall data set,
only 10 representative spots from each class are reported.
Figure 7 displays the results as follows. Each panel consists of
five rows: the front row, shown in red, depicts the correctly
predicted normal tissue pixels, whereas the next row (green)
shows correctly predicted necrotic pixels, followed by SCLC
(yellow), SqCC (blue), and ADC (pink). This color scheme is
maintained in all four panels of Figure 7. The columns

designate individual tissue spots, where the labels at the
bottom designates the slide and spot number (N, normal; S,
small cell carcinoma; Q, squamous cell carcinoma; and A,
adenocarcinoma), and the four-digit number the tissue spot
location (0102 corresponds to a spot in row A, column 2, and
so forth).

Correct predication, in the context of Figure 7, implies that
the major pathological diagnosis, as reported by Biomax,
agrees with the SHP classification. Figure 7a indicates that
normal tissue types were classified highly accurately in this
whole spot analysis of the test data set. The few pixels mis-
classified as ADC in spot N0408 are most likely because of
low signal quality. Similarly, Figure 7b shows the results for
10 SCLC spots. Spots S0502 and S0609 show some pixels
misclassified as ADC; however, the normal pixels (first row)

Table 5 False-positive (FP) and false-negative (FN)
classifications

Normal Necrosis SCLC SqCC ADC Diagnosis

N0105 3768 0 512 5 178 NOR FP

A0401 773 113 5091 9339 42 ADC/NECR FN

A0404 538 166 8695 2156 42 ADC/NECR FN

A0204 2707 65 5523 1552 3646 ADC/NECR FN

Q0307 0 48 374 73 471 SqCC FN

Q0304 58 4622 1 374 428 SqCC/NECR FN

S0106 123 2 8116 8 2 SCLC/NECR FN

S0303 905 0 5264 0 1 SCLC/NECR FN

S0503 1236 32 10 360 6 10 SCLC/NECR FN

Table 6 Sensitivities and specificities of the full spot analyses
including (A) and excluding (B), respectively, the samples for
which SCLC was classified correctly, but necrosis was missed

(A)

Cancer 148 8 94.9% Sensitivity

Normal 1 31 96.9% Specificity

(B)

Cancer 151 5 96.8% Sensitivity

Normal 1 31 96.9% Specificity

Figure 8 (a, c, f) Semitransparent photomicrographs of H&E-stained

tissue spots with SCLC (a), SqCC and necrosis (c), and ADC and necrosis

(e) with the annotated areas superimposed (‘true’ diagnoses). (b, d, f)

SHP predictions. The black arrows in (b) and (d) mark misclassifications

(red). In (f), an area of ADC was misclassified by SHP as SqCC.
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are not misclassifications but in fact normal tissue areas in
the spot. In Figure 7c, the normal pixels again are because of
normal tissue areas. These squamous cell cancer tissue spots
do exhibit necrotic pixels (green), but a few show signifi-
cant contributions from ADC. It is not clear, at this point,
whether these pixels are misclassifications, or represent
a mixed adenosquamous carcinoma. The identification of
ADC (Figure 7d) is very good, with a few spots showing
normal tissue areas.

Table 5 lists the misclassified (FP and FN) tissue spots. The
total number of misclassifications, 9/188 or 4.8%, is quite
small; however, of these, a number are borderline cases. The
FP diagnosis (eg, N0105) properly identified the majority of
pixels as normal, but the number of SCLC misclassifications
(512) exceeded the threshold. Similarly, the three last entries
in Table 5 identified the major cancer (SCLC) correctly,
but failed to detect a sizeable fraction of necrotic pixels. This
is in line with the previous discussion in the section ‘Pixel-
level test’ that indicated that the SHP tends to underestimate
necrosis in mixed NECR/SCLC samples. Furthermore,
Table 5 indicates that necrosis presents some difficulties in
the case of mixed NECR/ADC as well (spots A0401, A0404,
and A0204).

Table 6 summarizes the full spot results in terms of sen-
sitivity and specificity. Table 6A presents the sensitivity and
specificity of the full spot test for all nine misclassifications
listed in Table 5, whereas Table 6B lists sensitivity and spe-
cificity when samples LC702_A001_0106, LC702_A001_0303,
and LC702_A001_0503 (see Table 5) were included as true
positives as the cancer was identified correctly.

From spectroscopic and biochemical viewpoints, necrosis
presents a major change in cellular structure and biochemical
composition: the changes in protein conformation alone
distorts the amide I spectral region (see the section ‘Mechanism
of action of SHP’) so severely that smaller changes, such as the
ones distinguishing ADC and SqCC, may get overwhelmed.

Label Images
The label images to be discussed next are graphic repre-
sentations of the results introduced in the previous section.
Examples of these representations are shown in Figure 8.
Here, the images in the left column represent a highly
transparent view of the H&E-stained tissue spots, with the
annotated areas superimposed in the same color scheme
introduced before (red, normal; green, necrosis, yellow,
SCLC; blue, SqCC and purple, ADC). These annotations are
considered the gold standard, or ‘true’ value. The images in
the right column show the SHP predictions in the same color
scheme. The first row (Figure 8a and b) show the true and
predicted outcome for a tissue spot diagnosed with SCLC;
obviously, the agreement is excellent, and only a small region
(arrow) was misclassified. Similarly, a spot with necrosis and
SqCC (Figure 8c and d) is correctly classified by SHP in its
entirety. These two samples exemplify the overall quality of
the SHP predictions, and the majority of the spots in the test
set were predicted correctly by SHP.

Figure 8e and f shows a tissue spot with some mis-
classifications. Here, the regions diagnosed as necrosis were,
in general, well predicted by SHP, but some of the ADC
regions were predicted as mixtures of ADC and SqCC or
ADC and necrosis. Again, the images shown here are typical
for SHP misclassifications that occur mostly between cases of
poorly differentiated and advanced ADC and SqCC, parti-
cularly when accompanied by necrosis. A few spots were
misdiagnosed entirely between SqCC and ADC; however, no
malignant sample was ever classified as normal.

Figure 9 demonstrates that areas of misclassification often
exhibit low Platt probabilities. Figure 9a shows the ‘true’
annotation, whereas Figure 9b shows the SHP prediction.
There are two regions where necrosis (green) was missed by
SHP (although the central necrosis spot shows a few green
pixels in the SHP image), and many SqCC pixels were
misclassified as ADC. Figure 9c shows that many of the

Figure 9 (a) Annotated region of SqCC (blue) and necrosis (green) of a tissue spot. (b) SHP prediction. Notice the misclassifications (ADC, purple) and

the (near) absence of necrosis. (c) Platt-SVM result, indicting pixels of low certainty (probability) in white.
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misclassifications were made with low confidence, as indi-
cated by the white pixels. The misclassifications and low
probability classifications occurred in the vicinity of the
necrotic region, and we believe that the presence of necrosis
dominates spectral features such that the accuracy of the
ADC vs SqCC classification is compromised.

Benign Lesions
The benign lesions were analyzed in a completely analogous
manner. Images of H&E-stained sections and their corre-
sponding HCA images were annotated as described in the
section Annotation and data traceability’. Figure 10 shows

two examples of benign tumors, diagnosed as ‘organizing
pneumonia’ and ‘hamartoma’. The pixel spectra of annotated
regions were incorporated into the tissue data bases of nor-
mal tissues, and contributed 20 new tissue types; in addition,
many of the normal tissue types found in the noncancerous
regions of cancer tissue spots were found in the benign
lesions as well.

The tissue types from the nonmalignant tumors could be
easily distinguished from those of malignancies. Figure 11
shows an HCA-based dendrogram that demonstrates that the
class mean spectra from malignant and nonmalignant lesions
can be easily distinguished, with all benign classes (blue) well

Figure 10 Visible microscopic images (left) and corresponding infrared pseudocolor images of a hamartoma (a, b) and organizing pneumonia (c, d).

The cluster colors in panels B and D are arbitrary and not comparable.
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separated from the cancerous classes (red). This graph also
depicts that unsupervised HCA clusters the cancerous spectra
quite well by pathological criteria: all necrotic tissue classes
are found together in one cluster along with keratin pearls,
and all three SqCC grades and SCLC are differentiated from
ADC. There is a clear distinction between the different ADC
subtypes. A trained, LOOVC-based SVM classifier could sepa-
rate the benign from malignant lesions with 99% accuracy.

Normal Tissue Adjacent to Cancer Vs Normal Tissue
Adjacent to Benign or Inflammatory Lesions
We also investigated spectral differences between normal
tissues from cancer patients and normal tissue from patients
with benign lesions. To this end, the same normal tissue types
found in cancer, benign, and inflammatory samples were
extracted: the tissue class ‘blood vessel wall in cancer adjacent
tissue’ comprised 13 356 pixel spectra from 41 patients,
whereas the corresponding class ‘blood vessel wall in benign

samples’ contained 9825 pixel spectra from 56 patients. Si-
milarly, connective tissue classes contained 128 485 pixel
spectra in cancer-adjacent tissue and 3806 pixel spectra from
benign and inflammatory samples, see Table 7. (Notice that
patients could contribute to more than one tissue class in the
case of cancer adjacent connective tissue; hence, the number
of patients listed exceeds the number of patients in the
training and test set).

The calculations here were carried out on a patient-based
leave-one-out cross validation (LOOCV) because it was felt
that the discrepancy in the number of patients and pixel
spectra (particularly in the case of the connective tissue) did
not warrant a pixel-based classifier. The LOOCV produced
very impressive accuracy for the discrimination of these
tissue types.

These results suggest that the same tissue types in cancer-
adjacent and benign and inflammatory lesion-adjacent
tissues exhibit significant spectral differences. At present, the
underlying mechanisms for these differences are unknown.
However, several possible explanations exist:

1. Leakage and/or secretions of substances from cancer cells
into the surrounding normal tissue.

2. Early molecular changes (as a result of field cancerization)
that have not yet resulted in morphologic abnormalities
detectable by histopathologic examination in the cells
located in cancer-adjacent normal tissue.

3. Host response-related changes including chemotaxis of
immune cells in cancer-adjacent normal tissue.

SHP appears to be particularly sensitive to such changes:
a combination of X-ray and (synchrotron-based) infrared

Figure 11 HCA-based dendrogram of class mean spectra of benign and malignant lung tumors, including the main cancer classes (SCLC, SqCC, and ADC).

Table 7 Distinction of cancer-adjacent and benign and
inflammatory lesion-adjacent tissue types

Blood vessel wall Connective tissues

Cancer-adjacent tissues 13 356 (41) 128 485 (369)

Benign and inflammatory

lesion-adjacent tissues

9825 (56) 3806 (14)

Accuracy 90.3% 88.9%
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microspectroscopic studies35 has suggested that metallo-
proteinases in the vicinity of cancers may be responsible for
the subtle spectral changes encountered in the vicinity of
cancers. This observation may have far-reaching conseq-
uences for the detection and definition of the margins of
resection, and the mechanism of metastasis formation.

CONCLUSIONS/SUMMARY
This paper demonstrates for a large patient data set the
potential of SHP, a combination of infrared spectral methods
with SVMs, for the classification of benign and malignant
lung tumors. The major findings of this paper are:

1. SHP discriminates with high accuracy between normal
tissue types and cancer.

2. SHP can be used with high accuracy for the classification
between the three major lung cancers, SCLC, ADC, and
SqCC, and between cancerous and necrotic tissue.

3. Preliminary results indicate that subclassification of ADC
into the clinically relevant subclasses (lepidic, acinar, solid,
papillary, and micropapillary) via SHP appears feasible
once training and test data sets of sufficient size are
available. These efforts are presently underway.

4. Benign and malignant lung tumors could be distinguished
with high accuracy.

5. The findings of previous studies35,36 that indicated that
SHP is sensitive to the microenvironment of a tumor were
confirmed. These findings also confirm similar results
from SCP, an equivalent spectral method applied to exfo-
liated cells.16,17 In these SCP studies it was found that
morphologically normal cells that were harvested in the
vicinity of cancerous lesions already showed spectral
abnormality.

The label-free, morphology-independent, and compo-
sition-sensitive spectral methods introduced here have inhe-
rent advantages over many other methods used presently in
tissue diagnostics, and present a major innovation in the field
of medical diagnostics.
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