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Most cancers arise and evolve as a consequence of somatic mutations. These mutations influence tumor behavior and
clinical outcome. Consequently, there is considerable interest in identifying somatic variants within specific genes (such as
BRAF, KRAS and EGFR) so that chemotherapy can be tailored to the patient’s tumor genotype rather than using a generic
treatment based on histological diagnosis alone. Owing to the heterogeneous nature of tumors, a somatic mutation may
be present in only a subset of cells, necessitating the use of quantitative techniques to detect rare variants. The highly
quantitative nature of next-generation sequencing (NGS), together with the ability to multiplex numerous samples, makes
NGS an attractive choice with which to screen for somatic variants. However, the large volumes of sequence data present
significant difficulties when applying NGS for the detection of somatic mutations. To alleviate this, we have developed
methodologies including a set of data analysis programs, which allow the rapid screening of multiple formalin-fixed,
paraffin-embedded samples for the presence of specified somatic variants using unaligned Illumina NGS data.
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Deleterious sequence variants have an important part in the
initiation and progression of many different tumor types.
With the advent of drugs effective against specific molecular
targets, there is much interest in detecting variants in specific
genes (such as BRAF, KRAS and EGFR), so that therapy can
be tailored to the patient’s tumor genotype rather than
relying on empirical treatments based on tumor site and
histological type.1 Clinically important variants may either be
inherited through the germline or occur as spontaneous
somatic mutations.2 As germline variants are present in
normal tissue, at well-defined allelic ratios, their detection by
DNA screening is simple compared with the detection of
somatic mutations; the latter are at best restricted to
malignant or pre-malignant tissue, and at worst may occur
in only a small proportion of cells within the affected tissue.
Inherited germline variants can be identified using standard
diagnostic screening techniques (Sanger sequencing of PCR
amplicons containing the gene sequences of interest or next-
generation exome sequencing,3,4 Typically, in either case
DNA will be obtained from the patient’s peripheral blood.
However, these approaches are not well suited to the detec-
tion of somatic mutations in heterogeneous tumor samples,

where clinically important mutations may be present at a
level lower than the sensitivity of PCR/Sanger or exome
sequencing can detect. As only a minority of cancers are
caused by germline variants, there is an urgent need to
develop screening methodologies for the detection of the
much more prevalent somatic mutations.

Somatic mutations typically drive carcinogenesis by one of
two actions: deactivation of a protein that normally sup-
presses tumorigenesis; or constitutive activation of a protein
such that it drives carcinogenesis.2 Although deactivation of a
protein may be caused by a large number of possible
mutations across its gene, protein activation is generally
caused by a specific set of sequence variants that occur at
specific positions within it. For example, 80% of deactivating
mutations leading to cancer occur between residues 126 and
306 in the p53 protein,5 while 80% of activating mutations
occur at residue 600 in the BRAF protein.6 These genetic
differences have implications for the detection of clinically
important somatic mutations, with the entire coding
sequences of some genes needing to be screened, while
only specific nucleotide positions need to be analyzed in
others.

1Section of Pathology and Tumour Biology, Institute of Cancer and Pathology, University of Leeds, St James’s University Hospital, Leeds, UK; 2Yorkshire Regional
Genetics Service, St James’s University Hospital, Leeds, UK and 3Section of Genetics, Institute of Biomedical and Clinical Sciences, School of Medicine, University of
Leeds, St James’s University Hospital, Leeds, UK
Correspondence: Dr IM Carr, BSc, PhD, Institute of Biomedical and Clinical Sciences, School of Medicine, University of Leeds, St James’s University Hospital, Level 9
WTBB, Leeds, West Yorkshire LS9 7TF, UK.
E-mail: I.M.Carr@leeds.ac.uk

Received 19 March 2014; revised 4 June 2014; accepted 9 June 2014

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 94 October 2014 1173

Laboratory Investigation (2014) 94, 1173–1183

& 2014 USCAP, Inc All rights reserved 0023-6837/14

http://dx.doi.org/10.1038/labinvest.2014.96
mailto:I.M.Carr@leeds.ac.uk
http://www.laboratoryinvestigation.org


As approximately one-third of individuals in developed
countries are expected to develop cancer,7 cheap and sensitive,
high-throughput somatic mutation detection methodo-
logies are required. As massively parallel sequencing techno-
logies have matured, many diagnostic testing centers plan to
move to techniques based on next-generation sequencing
(NGS), as they promise high sensitivity combined with
very high throughput, at low cost per sample. To achieve
the required sensitivity at reasonable cost, it is necessary to
enrich a sample for the desired target sequences before
analysis. There are a number of approaches currently used to
enrich for target sequences, including PCR amplification,
molecular inversion probes, hybrid capture and in-solution
hybridization capture.8 Typically, hybridization capture reagents
are used when screening megabase-sized targets, while PCR
amplicon-based methods are used for comparatively small
targets up to the size of several kb.

Although sequence generation has become increasingly
simple, the bioinformatic analysis of these data remain a
major bottleneck. To overcome this obstacle, a number of
different pipelines have been developed for detecting and
cataloguing sequence variants, not only for targeted somatic
mutation detection, but for the technically similar goals of
microbiome profiling9,10 and HLA typing.11,12 In each case,
the analysis includes three basic steps: (i) determining the
origin of each read, (ii) identifying variants within each read
and (iii) aggregating the variant data to arrive at a conclu-
sion. To determine the point of origin of a sequence within
a genome, any of many sequence aligners may be used;
however, when sequencing small amplicons (o500 bp) a
read’s point of origin may be more quickly deduced by com-
paring its sequence with a table of all subsequences (including
known common variants) of the target amplicon(s).13 Similarly,
the presence of a sequence variant may be deduced either by
comparing each read with a wild-type reference sequence14

or by matching grouped identical reads to an index table
derived from the variant reference sequence of interest.13

Typically, to distinguish true positives, the number of reads
that suggest a specific variant is counted and then compared
with the total number of reads mapping to the same location;
such true positives are then annotated and exported to a
results file.

There are biological factors that limit the utility of software
in detecting rare sequence variants. Most importantly, tumor
genotyping is often performed on poor quality DNA
extracted from formalin-fixed, paraffin-embedded (FFPE)
samples, which is known to introduce sequence artifacts.15–17

In addition, owing to heterogeneity of tumor subclones and
admixture with normal cells, the results of analysis of a single
sample may not be representative of the tumor as a whole. To
maximize the reliability of a clinical test, knowledge of these
biological variables will be needed, as well as optimization of
the variant-calling software itself.

As far as the method used for somatic mutation detection
is concerned, usability is thus likely to be a more significant

issue than raw speed or detection limit. To maximize usability,
we have developed AgileSMPoint and AgileSMAll, which
allow the analysis to be performed on a typical desktop
computer as a single operator step. These programs identify
somatic sequence variants from unaligned sequence data
generated from targeted amplicon libraries. As far as possible,
both programs can identify and ignore sequences derived
from highly homologous pseudogenes. AgileSMPoint is
designed to identify sequence variants at specific positions in
an amplicon, such as known activating mutations in genes
like KRAS. AgileSMAll, in contrast, is designed to identify
sequence variants at all positions within an amplicon, and so
is more suited to the screening of tumor-suppressor genes
such as TP53. We have also streamlined the production of
target libraries using the method of targeted amplicon library
creation, in which the Illumina adaptors and index sequences
are incorporated into the amplicon during a single-step
amplification process.

MATERIALS AND METHODS
Patients
Anonymized FFPE tumor samples that had previously under-
gone routine diagnostic somatic mutation screening in the
diagnostic laboratory (Yorkshire Regional Genetics Service),
using either pyrosequencing (Pyrosequencing AB, Uppsala,
Sweden) or Rotor-Gene Q (Qiagen, Venlo, The Netherlands);
their mutational status was consequently known. This allowed
the selection of samples with a wide range of different
sequence variants in the BRAF, EGFR and KRAS genes.

DNA Extraction
FFPE tissue was processed to produce 10� 5 mm sections of
tissue for DNA extraction. Where necessary, the sections were
macro-dissected using hematoxylin and eosin-stained sec-
tions as a guide. DNA extraction was performed using the
Qiagen micro-kit (Qiagen, Manchester, UK) and resus-
pended in 20 ml nuclease-free water. Finally, the DNA was
quantified by Quant-iT PicoGreen assay (Invitrogen, Paisley,
UK) and diluted to 10 ng/ml.

Targeted Amplicon Library Creation
Library generation from genomic DNA for each of the
specified targets was performed in a one-step ‘touchdown’
PCR. The method is summarized in Figure 1 and the PCR
primers, library adaptor oligonucleotide sequences and PCR
thermocyling conditions are described in Supplementary
Tables S1–S3. In brief, the amplicons were amplified using
PCR primers containing a 50 tag that was not complementary
to the target sequence (Supplementary Table S1). Instead, the
tag in one primer was complementary to the 30 end of an
oligonucleotide that contains the universal Illumina library
adaptor sequence, while the other PCR primer’s tag was
complementary to the 30 end of an oligonucleotide that
contained the indexed Illumina library adaptor sequence
(Supplementary Table S2). Therefore, amplicons were
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initially generated by the two target-specific primers an-
nealing to the template DNA (Figure 1, step 1). In subsequent
rounds of amplification, amplicons were also generated by
the two library adaptor oligonucleotides annealing to PCR
products and so incorporating the library adaptors into the
amplicon (Figure 1, step 2). When multiplexing amplicons
from multiple samples, each sample was identified by using
an indexed adaptor with a different 6-nt index sequence for
each sample. The touchdown PCR reagents and thermo-
cycling conditions are shown in Supplementary Tables S3 and
S4, respectively.

NGS of Amplicon Libraries
Each amplicon library was size selected using agarose gel
electrophoresis, to remove unincorporated oligonucleotides
and PCR products lacking adaptors. Then each PCR library
was quantified using a Bioanalyser (Agilent Technologies,
Santa Clara, CA, USA) and combined to form pools for each
sample containing products at equimolar concentrations.
Before 150-bp paired-end sequencing on an Illumina MiSeq
(Illumina, San Diego, CA, USA), the sample pools were
combined to form a single sequencing pool. The resultant

sequencing reads were then de-multiplexed using the
Illumina de-tagging pipeline, such that sequence data for
each sample were placed in a single fastq file. Each member of
a read pair was analyzed independently, whether overlapping
or not.

Identification of Somatic Sequence Variants using a
Standard BWA/VarScan-Based Pipeline
To create a comparison data set of somatic sequence variants
to which the results generated by the software describe in this
paper could be described, we aligned the sequence data to the
human genome (hg19) using BWA18 and used samtools19 to
create a pileup file. Finally, VarScan14 was used to identify
sequence variants in the pileup file. Each step was accom-
plished using the command line arguments shown below:

BWA (two step alignment via *.sai file)
bwa aln [index file] -f [output.sai] [data.fastq.gz]
bwa samse -f [Export.sam] -r [index file] [output.sai]

[data.fastq.gz]
Samtools (pileup file creation).
samtools mpileup -f [index file] [Export.sam]4

[Export.pileup]
Varscan: identification of single base changes (line A)

and indels (line B)
A: java -jar VarScan.v2.3.6.jar mpileup2snp [Export.

Pileup] –min-coverage 100 –min-var-freq 0.05 –min-
freq-for-hom 0.95 –strand-filter 04ExportedVariants.vcf

B: java -jar VarScan.v2.3.6.jar mpileup2indel [Export.
Pileup] –min-coverage 100 –min-var-freq 0.05 –min-freq-
for-hom 0.95 –strand-filter 04ExportedVariants.vcf
When calling the variants, the minimum read depth was

set to 100 reads and the variant allele must be present in
45% of the reads.

Identification of Somatic Sequence Variants in
Unaligned Sequence Data
Rather than detecting somatic mutations by first aligning the
reads to a reference sequence and then interrogating the
aligned data at each position of interest, our approach
simultaneously identifies the origin of each read and main-
tains a running total of the base calls at positions of interest.
Once the unaligned data file has been completely read, the
nucleotide read depth data can then be used to assess the
presence of any sequence variants. The way in which each
program analyses the data are outlined below.

AgileSMPoint: identification of somatic sequence variants at
mutational hot spots
Information on the sequence of each amplicon and the posi-
tions to be queried is imported into AgileSMPoint using a
‘target’ file, within which the information for each amplicon
is present in two successive lines (Figure 2a). The first line
specifies the amplicon’s experimental ID, the location(s) of
the nucleotide(s) of interest on a reference sequence, the

Figure 1 The amplicons were generated in a two-step process. The

initial stage of amplification uses primers homologous to the target gene

sequence (blue line in step 1), with a 50 tag complementary to the 30 end

of either the Universal sequencing adaptor (pale brown line in step 1) or

the bar-coded sequencing adaptor (pale green line in step 1). The

resulting amplicons are subsequently amplified by primers homologous

to the full-length universal sequencing adaptor (dark brown line in step

2) or the bar-coded sequencing adaptor (dark green line in step 2).

Mutation detection in unaligned NGS data

K Sutton et al

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 94 October 2014 1175

http://www.laboratoryinvestigation.org


reference allele for the nucleotide(s) of interest and the
amplicon’s analysis set name. A further field containing
the character ‘P’ may be present (underlined in blue in
Figure 2a). This optional field instructs AgileSMPoint to
permit the presence of a SNP in the sequence flanking the
positions of interest when identifying reads originating from
that amplicon. The second line contains the sequence
flanking the query positions of interest, which are identified
by the character ‘N’ (underlined in red in Figure 2a). If there
is a possibility that reads may also originate from homo-
logous non-target sequences (such as pseudogenes), positions
where the duplicated sequences diverge can be identified by
using a lower case letter in the reference sequence (under-
lined in black in Figure 2a). If the sequence of a read differs at
these lower case positions, the read is flagged as originating
from a duplicated sequence and is excluded from subsequent
analysis.

Each read is scanned for the presence of flanking sequences
identical to the 18 bases preceding the first query position
and the 18 bases following the last query position for each
target amplicon, until a match is found. If the distance
between these flanking matches differs from the expected
gap, the read will be screened for an indel and is not used to
identify substitutions at the positions of interest. Once the
analysis is complete, the somatic variant data are exported as
two files. The first contains a report of the variants identified
(Supplementary Figure S1), while the second contains the
raw data showing the read depths for each nucleotide at each
position of interest, as well as the number of reads that
suggest the presence of an indel (Supplementary Figure S2).
The AgileSMPoint program, a user guide and demonstration
data are available from our website: http://dna.leeds.ac.uk/
agile/AgileSMPoint/.

AgileSMAll: identification of somatic sequence variants at each
position in an amplicon
As AgileSMAll screens the majority of positions within an
amplicon for sequence variants, it is likely that it will detect
sequence variants that are not physiologically important.
Therefore, AgileSMAll not only reports the variant’s nucleic
acid substitution, but also identifies its location within a gene

(ie, intronic, exonic or in a splice site). If the variant is in a
coding sequence, the predicted amino-acid substitution is
also reported. To identify these features, AgileSMAll requires
a genome annotation file, which contains information on the
location of all coding sequences in the genome. This file can
be created by AgileSMAll, as described in the online user
guide. The format of the amplicon target file is similar to the
fasta file format, with the information for each amplicon
present on two lines (Figure 2b). The first line contains the
gene’s name, a ‘tab’ character and the reference genome
coordinate of the first (50) nucleotide in the amplicon. The
next line contains the sequence of the amplicon (excluding
library adaptors) as it occurs on the (þ ) strand of the
genome reference sequence used to create the genome an-
notation file, followed by the sequence of the amplicon’s
primer sequences (excluding library adaptors tags). Again,
each sequence is separated by a tab character.

AgileSMAll identifies the origin of each read by comparing
its 50 sequence with the primer sequences described in the
target file. As, however, a significant proportion of reads may
derive from aberrantly amplified PCR products, AgileSMAll
scans the first six bases following the primer sequence and
ignores any sequence reads where this differs from the
reference sequence. Next, AgileSMAll scans the remaining
sequence to identify reads containing a possible indel. If a
read may contain an indel, the start of the indel is found.
Reads with indels at the same positions are combined to form
a single read, which is then aligned to the reference sequence,
allowing the indel’s structure to be deduced. Only reads
confirmed not to contain an indel are used to identify single
base-pair substitutions.

Once AgileSMAll has read the entire contents of a data file,
it identifies the presence of any variants. If the variant allele
read depth is above the user-defined cutoff values, the variant
is annotated and exported. AgileSMAll exports the data as
three files: a report file, a raw data file and an indel alignment
file. Examples of these files can be found in Supplementary
Figures S3–5 in the Supplementary Data. The report file
(Supplementary Figure S3) first describes the total number of
reads mapped to each amplicon, the number that may (or
may not) contain indels and the number of reads identified

Figure 2 The format of the target files used to describe the amplicons analyzed by AgileSMPoint (a) and AgileSMAll (b).
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as originating from an homologous sequence. Each descrip-
tion line of this type is followed by a list of the annotated
variants ordered by position in the amplicon. Each line in
this list describes a variant and shows the total number of
reads with the variant base followed by the number of reads
containing the reference base. If no variants were found, ‘no
mutations’ are written below the amplicon description line.
The indel alignment file (Supplementary Figure S4) contains
a description of each indel followed by a comparison of the
reference sequence and the typical sequence of the reads
found to have an indel at the specified location. These data
enable the user to identify indels that may be the result of
sequencing error, particularly dealing with sequences con-
taining mononucleotide repeat runs. The raw data file
(Supplementary Figure S5) details the number of reads
containing each of the four nucleotides at each position in
the amplicon. As this file contains all the information
necessary to detect substitution mutations in each amplicon,
it is possible to use this file to reanalyze the data using dif-
ferent cutoff values, rather than re-reading the original, much
larger sequence files. The AgileSMAll program, a user guide
and demonstration data are available from our website:
http://dna.leeds.ac.uk/agile/AgileSMAll/.

RESULTS
Twenty tumor samples were analyzed for EGFR mutations
and a second set of 25 tumors for BRAF and KRAS muta-
tions. These samples had previously been screened for
somatic mutations at the known mutational hotspots in
codon 600 of BRAF; codons 718, 744, 752, 767, 773, 789, 857
and 860 of EGFR; and codons 11, 12, 13 and 61 of KRAS. In
this way, it was possible to compare the known genotypes
with those identified using the AgileSMPoint and AgileSMAll
programs.

Sensitivity of the Analysis
As AgileSMAll screens all the positions within a PCR product
46 bases from a primer, it detected a number of sequence
variants not identified either by the earlier diagnostic
screening or by AgileSMPoint (which only screened specified
positions of known pathological importance). Most of these
were present in 30% or more of the total reads, and were
known SNPs. Interestingly, the remaining variants not
identified by the previous analysis were present in only one
sample of the EGFR cohort. This suggests that this sample
may have had an intrinsically higher experimental error,
possibly due to chemical modification of the DNA as a result
of the formalin fixation process. Although AgileSMPoint and
AgileSMAll identified all the variants detected by the prior
diagnostic screening, AgileSMPoint also detected the pre-
sence of four extra variants occurring at known mutational
hotspots and present in approximately 1% of reads. We did
not attempt to distinguish whether these were artifacts of
PCR or formalin fixation.

When the distribution of the proportion of base calls that
differ from the reference sequence at each non-primer posi-
tion in the BRAF and KRAS amplicons was examined
(Supplementary Table S5 and Supplementary Figure S6), it
could be seen that most positions were associated with non-
reference sequence base calls. The distribution of these non-
reference calls suggests that it will not be possible to discern if
a low allele fraction variant (o2% of reads) identified by
AgileSMPoint and AgileSMAll is a biologically genuine
mutation, or the result of experimental artifact (created by
formalin fixation, PCR error or sequencing error).

Optimum Read Depth
The EGFR and BRAF — KRAS data sets consisted of 125
(25� 5) and 60 (20� 3) amplicons, respectively. At this
degree of multiplexing, very high read depths were obtained
for all of the amplicons. As stated above, this does not
necessarily increase sensitivity. Therefore, we performed a
series of in silico experiments where the number of reads used
in the analysis was reduced. These experiments suggested that
it is possible to consistently identify variants at read depths of
approximately 2000 reads. However, we found that this
analysis was confounded by the difficulties of creating an
equimolar pool of amplicons to be sequenced. As can be seen
from Tables 1 and 2, the read depths vary several-fold
between different amplicons. This suggests that difficulties in
creating an equimolar pool of amplicons are a practical
concern when choosing the number of samples to multiplex
per lane. When pooling more than B100 amplicons per lane,
the time spent in equalizing the representation across samples
becomes prohibitive, unless a robotic solution is used.

It can also be seen that the number of reads flagged as
identifying a specific sequence variant differs between
AgileSMPoint and AgileSMAll. This reflects their different
approaches to identifying, which amplicon a read represents
and whether or not a read originates from a pseudogene
sequence. As there are no pseudogenes for EGFR, differences
in read depths in this data set are a direct consequence of the
method each program uses to identify the origin of a read.
AgileSMAll detects a slightly higher number of reads per
variant as it uses the 50 part of a read to deduce its origin.
This tends to have higher base-calling quality scores than the
sequences used by AgileSMPoint. However, if primers of low
synthesis quality and purity are used, the aberrant primer
sequences in the amplicon hinder AgileSMAll’s ability to
identify its origin and can have a major effect on the read
depth identified by AgileSMAll.

When screening the BRAF and KRAS data sets, which
could also contain reads from pseudogene sequences, all the
variants were found to have a very similar proportion of
supporting reads. This suggests that both programs were
equally effective at distinguishing reads originating from the
pseudogenes. If the analysis was repeated using amplicon
descriptions that lacked information on the divergent posi-
tions between the gene and pseudogene, the read depth at
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Table 1 Variants identified in the BRAF (NM_004333.4) and KRAS (NM_004985.3) data by Agile2 and Agile1

BRAF (1)a Amplicon 2 (KRAS) KRAS (3)a

c.1799T4A c.182A4T c.181C4T c.38G4A c.37G4T c.35G4A c.35G4T c.34G4C

Sample ID V4E Q4L Q4K G4D G4C G4D G4V G4C WT

11-1 55% (43 727)

55% (52 904)

11-52 54% (49 566)

54% (70 822)

11-67 36% (49 738)

36% (51 557)

11-108 37% (45 740)

36% (62 063)

11-243 36% (58 753)

36% (79 332)

o5% (58 796)

2% (79 332)

11-260 31% (44 363)

31% (68 112)

11-295 WT

WT

11-346 38% (64 521)

36% (110 083)

11-457 33% (61 542)

33% (94 365)

11-463 38% (115 707)

36% (189 143)

12-4 14% (55 960)

14% (47 437)

12-79 20% (57 883)

20% (86 088)

12-102 o5% (109 994)

1% (108 286)

49% (121 694)

49% (172 725)

12-166 46% (48 702)

46% (70 685)

12-177 28% (89 568)

28% (127 589)

12-219 21% (54 962)

19% (98 420)

o5% (61 791)

2% (87 704)

12-238 51% (100 693)

49% (169 641)

12-242 16% (119 479)

15% (208 984)

12-268 WT

WT

12-303 44% (41 213)

44% (44 671)

For each variant, the proportion of reads indicating a variant is shown as a percentage of the total number of reads scored (shown in brackets) by Agile2
and Agile1, respectively. WT identifies samples found to contain no variants. Underlined cells identify variants reported in the diagnostic screening.
aThe number in brackets indicates which amplicon contained each variant.
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Table 2 Variants identified in the EGFR (NM_005228.3) data by AgileSMAll and AgileSMPoint
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Table 2 (Continued )

For each variant, the proportion of reads indicating a variant is shown as a percentage of the total number of reads scored (shown in brackets) by AgileSMAll
and AgileSMPoint, respectively. Shaded cells identify variants that had been reported in the previous diagnostic screening.
aThe number in brackets indicates which amplicon contained each variant.
bFS and WT indicate frame shift and wild-type variants, respectively.
cThe insertion variant g.55249011InsCCAGCGTGG was correctly reported only in reads originating from the forward strand, as the read depth for the variant
on the reverse strand was below the 5% cutoff value used in this analysis.

Mutation detection in unaligned NGS data

K Sutton et al

1180 Laboratory Investigation | Volume 94 October 2014 | www.laboratoryinvestigation.org

http://www.laboratoryinvestigation.org


each variant position noticeably increased, with a corre-
sponding decrease in the proportion of reads supporting the
variant. This suggested that both programs were discounting
a large number of pseudogene-derived reads. Manual
examination of the retained and discarded reads could not
quantify the efficiency with which the reads were filtered, but
the similarity of the variant read depth data reported by the
programs when filtering out the pseudogene sequences sug-
gested that both filtering mechanisms were robust.

Comparison of Somatic Variant Detection Using Aligned
and Unaligned Sequence Data
When the sequence variant data sets produced by AgileSMall
and AgileSMPoint are compared with the sequence variants
identified using the BWA/VarScan pipeline (Supplementary
Tables S6 and S7), it can be seen that BWA/VarScan detected
all single base substitutions when the variant allele was pre-
sent in 45% of the total number of reads. However, the
BWA/VarScan pipeline did not identify any of the large indel
variants present in the EGFR data set.

DISCUSSION
As tumor behavior is largely determined by patterns of
somatically acquired mutation, there is considerable interest
in cheap and efficient high-throughput methods that can
quantifiably detect chosen examples of such variants. With
the advent of massively parallel sequencing technologies, it
has become comparatively trivial to generate the required
amount of sequence data to detect somatic mutations in a
quantifiable manner. However, owing to the volume of data,
analysis has become a significant bottleneck in their detec-
tion. To simplify and speed up diagnostic analysis, we have
adopted an amplicon-based NGS library production method
and developed two novel programs to detect the presence of
somatic mutations in tumor samples. When screening a
comparatively small number of positions with AgileSMPoint,
it is possible to identity variants present in as little as 1% of
chromosomes in a sample. Owing to the greater number of
positions screened by AgileSMAll resulting in more false
positives, AgileSMAll can reliably identify variants present in
5% or more of the sequences in a sample. The effect of
adjusting this cutoff value on the number of variants
identified by AgileSMAll can be seen in Supplementary Table
S8, for each data set. The most appropriate value for this
cutoff should be determined by the user for each data set, as
the number of false positives is affected by the method of
FFPE fixing, amplicon sequence and PCR amplification
protocol.

For the work described here, we chose to create the am-
plicon-based NGS libraries in a single PCR step. Although we
have successfully used this method, as with all PCR-based
approaches, it may require a degree of modification and
optimization according to the nature of the target sequences.
Typically, we have found the molar ratio of target-specific
primers to the Illumina adapter oligonucleotides to be an

important parameter when optimizing library production.
In certain instances, it may be necessary to ligate the adaptor
sequences to the amplicons in a second step.

Although the capabilities of AgileSMAll are broader than
those of AgileSMPoint, both programs have specific features
making them better suited to different scenarios. Agi-
leSMPoint was designed to detect variants at known patho-
logically important positions in oncogenes, and so performs
only a subset of the analysis that AgileSMAll is capable of.
Although AgileSMAll is able to perform this simpler task, in
doing so it would also identify variants of unknown signi-
ficance (‘VUS’), which at best would be ignored and at worst
may cause a dilemma regarding the reporting of VUS. Con-
sequently, by restricting the range of information reported, the
AgileSMPoint program is more suited to diagnostic situa-
tions in which treatment decisions are directly based on
genotype(s) at specified positions.

The greater range of variants detected by AgileSMAll
makes it more suitable for the identification of deactivating
mutations in tumor-suppressor genes, where important
variants may occur in more loosely designated positions
across the gene. In this situation, the detection of variants of
unknown importance cannot be avoided and so protocols for
assessing their importance must be developed. The greater
capabilities of AgileSMAll may also make it more suitable for
use in a research setting, where ethical and consent issues
have normally been resolved at the start of the project and the
detection of VUS may be a desired outcome.

When the sequence data were analyzed using the BWA/
VarScan pipeline, all single-base variants with an alternative
allele read depth greater than threshold of 5% of the total
number of reads were identified. However, the large indel
variants were missed. Although the BWA/VarScan pipeline
may be tunable to improve the pickup rate of specific muta-
tion types, we feel that this comparison with a commonly
used set of command-line tools demonstrates the robustness
of the AgileSMAll and AgileSMPoints analysis. Unlike Agi-
leSMAll and AgileSMPoints, which ignored sequences
derived from the PCR primers, the default BWA/VarScan
pipeline screened the entire length of the amplicons, and so
identified a large number of spurious variants derived from
primer synthesis errors. As the sequencing target was gener-
ated by PCR amplification, the BWA/VarScan pipeline also
identified variants present in sequences either originating
from pseudogenes or aberrantly amplified by primer mis-
annealing. Although such variants, if known, can be easily
identified by their genomic position, the BWA/VarScan
pipeline would need to be extended to filter out these var-
iants, as they composed the majority of variants identified by
this pipeline.

As discussed in the Results section, the available read depth
for each PCR product does not limit the sensitivity of our
methodology. Rather, the latter appears to be limited by
artifactual sequence changes represented in the amplicons, as
a result of either DNA damage caused by tissue fixation or
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(for unfixed samples) PCR-induced errors. As formalin
fixation is known to damage DNA, optimal sensitivity for
detection of rare mutations is likely to be achieved by
extracting DNA from fresh or frozen tissue.20,21 However,
given the current widespread diagnostic use of FFPE samples,
we chose to use them to demonstrate the practical utility of
our analysis methods with the sample types currently
available.

Even when using DNA from unfixed fresh tissue, sensi-
tivity may still be limited by the PCR-induced error rate and
the sequencer’s base-calling error rate. With NGS using
Illumina technology, the manufacturer’s criterion for a suc-
cessful run requires a base-calling error rate of o1 in 1000
for only 80% of called bases; this implies that base-calling
errors may be the most important factor limiting NGS-based
somatic mutation detection. This is especially true for longer
reads, when the quality scores for the later positions are
worse than those for the earlier positions. The minimum
achievable detection frequency for a minor allele has been
reported in the literature to be between 3% and 0.1%22–27

and as our data are derived from FFPE-treated DNA samples
it is not surprising that our minimum allele frequency cutoff
is toward the upper end of this range.

The maximum manageable level of sample multiplexing in
a single experiment may be limited by the ability to create
equimolar pools of PCR products, rather than by theoretical
read depths. Creating equimolar pools of amplicons may
seem a trivial task, but pipetting errors and difficulties in
quantifying PCR product concentrations introduce a sig-
nificant level of variation when pooling several hundred PCR
products.

The detection of sequence variants may be confounded by
the presence of SNPs in the amplicons or by the co-ampli-
fication of pseudogene sequences. It is particularly important
to ensure that PCR primers do not anneal to sequences
containing a SNP, as this could cause an amplification bias
possibly excluding any variant on the same allele as the non-
reference SNP allele. As AgileSMAll identifies the origin of a
read by determining the primer used to amplify the ampli-
con, its analysis is not affected by the presence of SNPs in the
amplified sequence. However, AgileSMPoint will only cor-
rectly analyze reads with SNPs close to the positions of
interest if the program is instructed to do so in the target file
(as described in the Materials and methods section). Both
programs have mechanisms to distinguish reads originating
from pseudogene sequences, with the divergent position
highlighted in the program’s target file. However, this depends
on the divergent positions being present in each read. For
paralogous sequences with no suitably placed divergent
positions, it may not be possible to filter out pseudogene
sequences. In this case, their presence should be taken into
consideration when interpreting the results.

In conclusion, we have developed a robust practical
methodology for the detection of somatic mutations down
to proportions as low as 1% (AgileSMPoint) or 4% (Agi-

leSMAll), using DNA extracted from FFPE tumor samples.
The data analysis algorithms can detect and ignore sequences
derived from co-amplified pseudogenes, while also correctly
processing data containing known SNPs close to the posi-
tions of interest. The software applications (AgileSMPoint
and AgileSMAll) are freely available from http://dna.leeds.
ac.uk/agile/, where extensive user guides and demonstration
data may also be found.

The simplicity of these methods for identifying rare
sequence variants within a sample means that it is quite
feasible to measure intratumor heterogeneity using multiple
biopsies. As a result, as discussed above, variant detection is
limited by factors other than read depth, the simplicity of our
method opens up to analyze the important question of
whether it is clinically more valuable to perform extensive
analysis on a single sample per tumor or less exhaustive
tests on a large number of samples from across the same
tumor.

Supplementary Information accompanies the paper on the Laboratory

Investigation website (http://www.laboratoryinvestigation.org)
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