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miRNAs are a class of regulatory molecules involved in a wide range of cellular functions, including growth, development
and apoptosis. Given their widespread roles in biological processes, understanding their patterns of expression in normal
and diseased states will provide insights into the consequences of aberrant expression. As such, global miRNA expression
profiling of human malignancies is gaining popularity in both basic and clinically driven research. However, to date, the
majority of such analyses have used microarrays and quantitative real-time PCR. With the introduction of digital count
technologies, such as next-generation sequencing (NGS) and the NanoString nCounter System, we have at our disposal
many more options. To make effective use of these different platforms, the strengths and pitfalls of several miRNA
profiling technologies were assessed, including a microarray platform, NGS technologies and the NanoString nCounter
System. Overall, NGS had the greatest detection sensitivity, largest dynamic range of detection and highest accuracy in
differential expression analysis when compared with gold-standard quantitative real-time PCR. Its technical reproduci-
bility was high, with intrasample correlations of at least 0.95 in all cases. Furthermore, miRNA analysis of formalin-fixed,
paraffin-embedded (FFPE) tissue was also evaluated. Expression profiles between paired frozen and FFPE samples were
similar, with Spearman’s r40.93. These results show the superior sensitivity, accuracy and robustness of NGS for the
comprehensive profiling of miRNAs in both frozen and FFPE tissues.
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Since their initial discovery in nematodes two decades ago,1

microRNAs (miRNAs) have come to be recognized as key
regulators of many biological processes and promising bio-
markers for disease. miRNAs are endogenous, small noncoding
nucleotides that negatively regulate gene expression post-
transcriptionally by recognizing and binding to the 30-UTR of
mRNAs in a sequence-specific manner.2 Depending on the
degree of sequence complementarity, this interaction can
mediate either translational inhibition or mRNA degradation.3

Over 30% of human protein-coding genes are predicted to be
conserved targets of miRNAs.4 Compared with the B30 000
estimated mRNAs, there are currently B1400 miRNAs depo-
sited in public databases;5 a single miRNA can potentially
target many hundreds of genes, causing substantial effects on
gene expression networks.6 Thus, variation in the abundance
level of a few miRNAs is likely to be associated with
development and progression of diseases. Understanding

their patterns of expression could provide new insights into
complex biological processes and the possible clinical impli-
cations of miRNA dysfunction.

Technological advances have brought about a multitude of
platforms for the systematic evaluation of miRNAs. These
tools are largely derived from mRNA expression analysis and
array-based comparative genomic hybridization. However,
compared with other nucleic acids, the analysis of miRNA is
complicated by several factors:7 their short length, highly
similar sequences between family members, discrimination
between mature and primary forms, and their rapid rate of
discovery. Understanding the strengths and limitations of
different profiling approaches can help apply these tools
more effectively for specific biological applications.

Microarrays have been used extensively for the simulta-
neous profiling of thousands of genes in a single experiment.
Along with quantitative real-time polymerase chain reaction
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(qPCR), they are the most commonly used platform to
evaluate the expression of known miRNAs.8–10 They are
relatively cost-effective, quick from RNA labeling to data
generation and simple to use.11 However, the short length of
these molecules does not always allow for optimal probe
design, as the miRNA sequences themselves have to be used
as the probe sequences.7 The evolution of digital count
technologies has provided new methods for miRNA
profiling. Next-generation sequencing (NGS) allows for the
simultaneous discovery of new miRNAs and confir-
mation of known miRNAs. It can overcome the short-
comings of microarrays, which can suffer from background
signal and cross-hybridization issues; however, sample
preparation involves many steps that can introduce biases
and sequencing errors,12 and the computational tools for
analysis are in their infancy. A more recent innovation in
expression profiling is the NanoString nCounter system,
a hybridization-based technology that can detect specific
nucleic acid molecules from low amounts of starting
material without the need for reverse transcription or
cDNA amplification. Multiplexed sequence-specific probe
pairs are first hybridized in-solution to transcripts of interest,
and abundance levels are determined by tabulating the
number of target-specific fluorescent tag for each miRNA
assayed.13

In this study, five pairs of non-small-cell lung cancer cell
lines and their corresponding xenograft models were profiled
on four platforms representative of different detection
mechanisms: the Illumina Human microRNA Expression
Profiling v.2 microarray (Illumina, San Diego, CA, USA), Life
Technologies SOLiDt 4 (Life Technologies, Carlsbad, CA,
USA), Illumina HiSeq 2500 (Illumina) and the NanoString
nCounter Human miRNA Expression Assay v.1 (NanoString,
Seattle, WA, USA). The platforms were evaluated according
to the following criteria: (i) interplatform concordance, (ii)
concordance with qPCR, the current gold-standard assay for
expression measurements, (iii) detection of differentially
expressed (DE) miRNAs in a biologically relevant setting and
(iv) dynamic range of detection. On the basis of these cri-
teria, NGS platforms were the most robust for the compre-
hensive expression profiling of miRNAs.

MATERIALS AND METHODS
Cell Culture, Xenografts and RNA Isolation
A549, H460, H520, H1264 and RVH6849 cells were cultured
in RPMI-1640, supplemented with 10% FBS and 1� peni-
cillin/streptomycin. Xenografts were grown by subcutaneous
injection of two million trypsin-dissociated tumor cells into
non-obese diabetic/severe-combined immunodeficient mice.
Total RNA was isolated from confluent cell lines and fresh-
frozen xenograft tissues using Trizol reagent (Life Technolo-
gies) according to the manufacturer’s instructions, followed
by DNAse I treatment (Life Technologies) and purification
using the Qiagen RNeasy kit (Qiagen, Venlo, The Netherlands).
For formalin-fixed, paraffin-embedded (FFPE) samples,

10–15 mm tissue sections were first deparaffinized using
xylene and ethanol washes. Total RNA was isolated using the
Norgen FFPE RNA Purification kit (Norgen BioTek, Ontario,
Canada) as per the manufacturer’s instructions. RNA quantity
and quality was assessed using the Qubit Fluorometer (Life
Technologies), Nanodrop 1000 (Nanodrop Technologies,
Wilmington, DE, USA) and Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).

Illumina miRNA Assay
Aliquots of the RNA samples were provided to the University
Health Networks (UHN) Microarray Centre for microarray
analysis using the Illumina Human microRNA Expression
Profiling v.2 Panels. In brief, 200 ng of total RNA from each
sample was labeled using the Illumina microRNA Assay kit
according to the manufacturer’s protocol (Illumina). The
labeled samples were hybridized to a 12-sample Universal
BeadChip, incubated at 60 1C for 30min and hybridized at
45 1C for 18 h. The BeadChips were then washed and stained
as per the Illumina protocol, and scanned on the iScan
(Illumina). The data files were quantified in BeadStudio
v.3.3.8 (Illumina) and loaded into the R statistical environment
(v.2.14.0) using the lumi package (v.2.6.0)14 implemented in
the Bioconductor libraries.15 The probes were reannotated
against miRBase v.16,16–19 log2 transformed and normalized
using the robust spline normalization algorithm. No back-
ground correction was performed.

Life Technologies SOLiDTM Sequencing
Total RNA samples were fractionated using the flashPAGETM

fractionator system (Life Technologies) and small RNAs
(Bo40 nt) were recovered by ethanol precipitation. Small
RNA enrichment was confirmed using the small RNA
Lab-on-a-Chip kit and the Bioanalyzer 2100. Fifteen nano-
grams of small RNAs from each sample was used to construct
cDNA libraries according to the SOLiDTM Total RNA-Seq
protocol (Life Technologies). The libraries were amplified
by emulsion PCR, and beads were deposited on a slide for
sequencing in-house on the SOLiDTM 4 System.

Short-read sequences were output in color space FASTA
format with corresponding base qualities. The reads were
trimmed for adapter sequences using Cutadapt (v.0.9.3),20

and the resulting color space FASTA file contained sequences
with either bases trimmed from the 30 end corresponding
to the adapters or without trimmed bases. Untrimmed
reads were aligned to a tRNA and homopolymer reference to
remove random sequences. The remaining reads were aligned
to miRBase v.16 mature miRNA reference using SHRiMP
(v.2).21 Only perfectly and uniquely aligned reads were
retained and counted to determine the abundance of each
annotated miRNA. The summarized count data were loaded
into the R statistical environment (v.2.14.0); samples with
higher coverage were downsampled before normalization by
total count scaling.
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Illumina Sequencing
Libraries for sequencing on the HiSeq 2000 and 2500 systems
were prepared as per Illumina TruSeq Small RNA protocol
(Illumina). In brief, 30 and 50 adapters were sequentially
ligated to the ends of small RNAs fractionated from 5 mg of
total RNA, and reverse transcribed to generate cDNA. The
cDNA was amplified (11 cycles of PCR) using a common
primer complementary to the 30 adapter, and a primer con-
taining 1 of 48 index sequences. Samples were size-selected
(140–160 bp fragments) on a 6% polyacrylamide gel,
purified, quantified and pooled for multiplexed sequencing.
The resulting pooled libraries were hybridized to oligonu-
cleotide-coated single-read flow cells for cluster generation
using the Illumina cBot or on-instrument (HiSeq 2500), and
subsequently sequenced on the Illumina HiSeq 2000 or HiSeq
2500 for 50 sequencing cycles.

Base calling was performed using CASAVA (v.1.8.2) (Illu-
mina) and short-read sequences were output in FASTQ for-
mat with corresponding base quality scores. Quality control
(QC) of the raw sequences from each sequenced library was
investigated using FastQC (v.0.9.1)22 to check for homopoly-
mers, adapters and distribution of base quality. The raw data
were initially filtered for reads containing ambiguous base
calls, which did not meet the Illumina chastity filter based on
quality measures. The remaining reads were trimmed for
adapters and mapped to the miRBase v.16 mature miRNA
reference using Novocraft’s Novoalign (v.2.07.14).23 The
summarized count data were loaded into the R statistical
environment (v.2.14.0) and normalized by linear regression
using the median count value of each miRNA across the
samples as reference.

NanoString nCounter System miRNA Assay
One hundred nanograms of total RNA from each sample was
provided to the UHN Microarray Centre for NanoString
nCounter analysis. The samples were prepared for nCounter
miRNA expression profiling according to the manufacturer’s
recommendations (NanoString). For each sample, a scan of
600 fields of view (FOV) was imaged.

Before data normalization, nCounter data imaging QC
metrics were assessed. There was no significant discrepancy
between the FOVs attempted and the FOVs counted. The
binding density for the samples ranged between 0.24 and
0.72—within the typical recommended range. The raw data
were loaded into the R statistical environment (v.2.14.0), and
reannotated against miRBase v.16. First, probes indicated to
have some level of background were corrected using probe
level adjustment factors. Then, the geometric mean of the
positive controls was used for code count normalization,
while the background was estimated using the mean of the
negative controls. Sample input amounts were normalized to
the geometric mean of five housekeeping mRNA controls
(ACTB, B2M, GAPDH, RPL19 and RPL10) included in the
assay, and finally to total miRNA count.

Probe Reannotation
The Illumina Human microRNA Assay was designed against
miRBase v.12.05, additional novel sequences derived using
Illumina sequencing technology and novel miRNAs discovered
in two separate published studies.24,25 These probes were first
aligned to the genome (hg19), and then to miRBase v.16
using BWA (v.0.5.9-r16 ).26 Following removal of nonspecific
and non-uniquely aligned probes, 812 probes were retained
and reannotated. The NanoString Human miRNA Expression
Assay v.1 kit profiled 734 human and human-associated viral
miRNAs from miRBase v.14 (http: //www.nanostring.com/).
As the probe sequences were not provided by the manu-
facturer, the provided target sequences were aligned to
miRBase v.16. Thirteen of the 654 human miRNA probes
corresponded to retracted miRBase entries, whereas four
were annotated differently between miRBase v.14 and v.16.
Thus, 641 probes were considered.

TaqMans miRNA Quantitative Real-time PCR
qPCR was performed using TaqMans microRNA assays
(Life Technologies). cDNA for each miRNA of interest was
synthesized from an input of 5 ng of total RNA using the
TaqMans microRNA Reverse Transcription Reagents (Life
Technologies) and specific reverse transcription primers (Life
Technologies). Real-time PCR with TaqMans probes was
performed on a Life Technologies ViiAt 7 Real-Time PCR
System using the following conditions: 10min at 95 1C, fol-
lowed by 40 cycles of 95 1C for 30 s and 60 1C for 1min. All
assays were performed in triplicates. CT values were
determined using the SDS software with automatic baseline
and threshold settings. The data were loaded into the R
statistical environment (v.2.14.0) and preprocessed. Triplicate
CT values were averaged and normalized to the geometric
mean of let-7g, miR-191 and miR-335-3p, which were
selected as endogenous controls based on geNorm27 and
NormFinder28 (Supplementary Figure 1). The normalized
expression was calculated as log2|2

�DCT|. CT values 436
were considered to be below the limit of detection.

Data Analysis
All data analyses and graphical representations were per-
formed and generated in the R statistical environment (v.2.14.0).
Agglomerative hierarchical clustering was performed using
Spearman’s correlation coefficients as input, Euclidean dis-
tance as the distance metric and complete linkage. Results
were visualized with heatmaps using the lattice (v.0.20-0) and
latticeExtra (v.0.6-19) packages.

To identify DE miRNAs between cell lines and xenografts
from the microarray and qPCR data sets, linear models were
fit to each individual miRNA. Each miRNA was tested for
changes in abundance levels using empirical Bayes moderated
t-statistics, where the standard errors were moderated across
the probes.29 For the sequencing and NanoString data, the
count data was modeled as negative binomial distributed and
the gene-wise dispersion was estimated by the Cox–Reid
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profiled-adjusted method.30 An empirical Bayes approach
was applied to moderate the variance. DE miRNAs were
identified using a generalized linear model-likelihood ratio
test. A paired sample design was used for all analyses,
matching each cell line with its respective xenograft model.
The P-values were adjusted for multiple testing using the false
discovery rate approach.31 Significant miRNAs were selected
based on an arbitrary |fold change|Z2 and Padjustedr0.05.
The performance of each platform in identifying DE and
non-DE miRNAs was evaluated using a binary classification
system and qPCR results as the true values. Statistical
analyses were performed using the limma (v.3.10.2)32 and
edgeR (v.2.4.3)33 packages for the R statistical environment
(v.2.14.0).

RESULTS
miRNA Profiling Study Design
In comparison with previous cross-platform analyses, which
used tissues of significantly different origins,11,34–36 we have
chosen to compare the miRNA expression profiles between
more closely related samples—representative of a realistic
application of profiling experiments. Previous gene expres-
sion profiling studies comparing tumor cell lines grown
in vitro and in vivo have identified subsets of genes upregu-
lated in cultured cells.37–39 We hypothesize that the miRNA
expression profiles are also altered between cells grown in

culture and as xenografts. We have selected this as our
biological model for evaluating the characteristics and appli-
cations of different miRNA profiling technologies because
they are renewable sources of material, which provide
reproducible results when used with the same protocol and
at the same passage.40 Total RNA was isolated from five pairs
of non-small-cell lung cancer cell lines (n¼ 5) and their
corresponding xenograft models (n¼ 5), and miRNA profiles
were analyzed on each of the four platforms (see Figure 1a for
experimental and data analysis workflow). All samples
(n¼ 10) were analyzed once on each of the four platforms,
except when evaluating the technical reproducibility of NGS
technologies, where samples were sequenced in duplicates on
the HiSeq 2500. A total of 1146 and 654 miRNAs were as-
sayed on the microarray and NanoString platforms, respec-
tively, whereas 1072 and 1084 miRNAs were detected by
SOLiD and HiSeq 2500 sequencing, respectively (Figure 1b).
All raw and preprocessed data reported in this study have
been deposited in the Gene Expression Omnibus repository,
under accession no. GSE51508.

Probe Reannotation and Data Filtering
Owing to the frequent update of the miRBase miRNA
database,5 probe-based miRNA detection platforms are
usually designed against different versions of the database.
The name and length of miRNAs can vary between versions,

Figure 1 Experimental outline. (a) Experimental and data analysis workflow. (b) Overlap of microRNAs (miRNAs) interrogated by all platforms.

(c) Overlap of miRNAs after filtering for detectable levels above a specified threshold across all platforms. This filtering process reduced the

overlap of 517 miRNAs to 205 miRNAs.
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resulting in an annotation problem for cross-platform
comparisons. Furthermore, miRNA entries are sometimes
retracted based on overlap with annotated snoRNAs or
tRNAs or invalidated by subsequent work. Therefore, probes
were remapped using the most up-to-date information from
current genome sequence databases (see Materials and
Methods).

We focused our analyses on 517 miRNAs that were inter-
rogated by all three digital count platforms, and whose
microarray probes had no predicted cross-hybridization
(Figure 1b). Our filtering criteria for detection for the
microarray was a threshold detection P-value of 0.05, and for
the sequencing data, a threshold of 10 normalized count-per-
million that mapped to mature miRNA sequences in at least
50% of the samples. Likewise, for NanoString, only miRNAs
that were detected in at least 50% of the samples were con-
sidered. On the basis of these criteria, 560, 693, 595 and 502
miRNAs were detected using the microarray, SOLiD, HiSeq
2500 and NanoString, respectively. The intersection of all
three platforms was 205 miRNAs (Figure 1c).

Interplatform Variability
To allow for a non-biased comparison of the platforms’
performance, correlation analyses were performed on the set
of 205 miRNAs detected across the four platforms. Fold
changes between the cell lines and xenografts were plotted for
each pairwise platform comparison, and Spearman’s corre-
lation values were calculated (Figure 2). Results from the two
sequencing platforms showed good correlation to each other
(r¼ 0.75), and to the microarray data (r¼ 0.73 and 0.69 for
SOLiD and HiSeq 2500, respectively). By contrast, correlation
with the NanoString data was only moderate for all compari-
sons (rB0.50). A Friedman test revealed significant differ-
ences in fold change measurements across the platforms
(w2¼ 159.26, Po2.2� 10� 16). Post hoc analysis using Wilcox-
on’s signed-rank tests showed significant differences between
all platforms (Supplementary Table 1).

Comparison with qPCR Results
Results from miRNA profiling experiments are regularly
validated by qPCR because of its detection sensitivity, spe-
cificity, reproducibility and large dynamic range. Accord-
ingly, the expression of 86 miRNAs was analyzed using
TaqMan qPCR assays, including miRNAs identified as sig-
nificantly and nonsignificantly DE by at least one platform,
and non-DE miRNAs. Of these, 68 miRNAs were targeted by
all four platforms and had CT values o36 in at least one
sample. The fold changes between xenografts and cell lines
generated by each platform were plotted against qPCR re-
sults, and Spearman’s correlation values were calculated
(Figure 3). Strong correlation was observed for all platforms,
with the relative accuracy of NGS to qPCR results being the
highest (r¼ 0.86, Po2.2� 10� 16). A lower, but highly sig-
nificant, correlation was observed between NanoString and
qPCR (r¼ 0.72).

Differential Expression Analysis: Cell line–Xenograft
Comparison
The purpose of many profiling experiments is to assess the
molecular changes that can alter a given physiological state,
such as uncovering differences in global expression levels
between a ‘normal’ control and a ‘disease’ state. A list of DE
miRNAs between cell lines and xenografts was generated for
each platform using all 517 common miRNAs. The overlap is
displayed in a Venn diagram in Supplementary Figure 2. To
assess the robustness of each platform in correctly predicting
DE miRNAs, qPCR results were used as ground truth. Of the
68 miRNAs targeted by all four platforms, 23/68 were
determined to be DE by qPCR (|fold change|Z2,
Padjustedr0.05). Using these data, the sensitivity, specificity
and accuracy of each platform for the detection of differential
expression was evaluated (Table 1 and Supplementary
Table 2). Although the specificity (true-negative rate)
was highest for HiSeq 2500 and NanoString, the sensitivity
(true-positive rate) was superior for NGS technologies,
with the HiSeq 2500 system being the most accurate for
differential expression analysis (ACC¼ 0.88) when compared
with qPCR.

Dynamic Range of Detection
The dynamic range of detection affects the accurate quanti-
fication of transcripts with varying abundance between
sample classes. For platforms with a small dynamic range,

Figure 2 Variability across profiling technologies. Fold changes for

microRNAs (miRNAs) detected across all platforms were plotted for each

pairwise comparison. Spearman’s correlation values are shown on the

upper left corner of each plot. Correlation of NanoString to all platforms

was lower than between microarray and next-generation sequencing

(NGS) platforms.
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differences in abundance could be underestimated or even
undetected; this fold change compression is characteristic of
microarray technology. The fold changes corresponding to
the 68 miRNAs validated by qPCR were examined for each
platform (Supplementary Table 2). The magnitude of these
fold changes show that NGS technologies have the largest
dynamic range (at least 10 logs) as measured by log2 count
values or signal intensity, followed by NanoString (B8 logs),
and lastly, the microarray platform (o5 logs). As qPCR is
often expected and assumed to detect a wide variety of
transcripts present at very different levels, log-ratio com-
pression or expansion was examined relative to qPCR results
(Figure 3). Although the best-fitted line from linear regres-
sion analysis showed that the fold changes determined by
NGS platforms is comparable to qPCR owing to the large

dynamic range of detection (slope, b1¼ 0.96 and 0.87 for
SOLiD and HiSeq 2500, respectively), the microarray and
NanoSring suffered from strong fold-change compression
(b1B0.50).

Technical Reproducibility of miRNA Sequencing
So far, we have shown that data generated using NGS tech-
nologies are comparable to the more established microarrays,
can be validated by qPCR and is superior for differential
expression analysis. To further validate the use of NGS for
global miRNA expression profiling, the technical reproduci-
bility of data generated on the HiSeq 2500 was evaluated.
Unsupervised hierarchical clustering was used to visualize
the similarity between the expression profiles of the technical
and biological replicates (Figure 4a). All technical repli-
cates clustered closely together, separate from biological
replicates (Spearman’s r40.95 for all cases, see Supplemen-
tary Figure 3). In addition, all cell lines were more similar
to each other than they were to their xenograft coun-
terparts. Next, the coefficient of variation (CV) of miRNAs
detected in technical duplicates was examined (Figure 4b). As
expected, more variability was present across biological
replicates compared with the variability between technical
replicates.

Figure 3 Comparison of microRNA (miRNA) profiling results with quantitative real-time polymerase chain reaction (qPCR). Fold changes for 68 miRNAs

determined from (a) microarray, (b) SOLiD sequencing, (c) HiSeq 2500 sequencing and (d) NanoString were plotted against qPCR results. Correlation

coefficients and slopes are listed at the bottom left corner of each plot. The solid black line shown is the identify function, which represents perfect

accuracy relative to qPCR. The orange line represents the best-fitted line from linear regression analysis. b1o1 indicates log ratio compression relative

to qPCR.

Table 1 Performance of platforms in predicting differential
expression

Microarray SOLiD HiSeq 2500 NanoString

Specificity 0.84 0.76 0.93 0.93

Sensitivity 0.43 0.91 0.78 0.61

Accuracy 0.71 0.81 0.88 0.82
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Consistent miRNA Profiles Between Frozen and FFPE
Specimen
Although cell lines and fresh-frozen tissues yield high-quality
RNA suitable for expression-profiling studies, FFPE tissues
are often the only tissue type available in the clinical setting.
To evaluate the feasibility of sequencing FFPE tissue specimen
and the ability to recover miRNA profiles similar to their
snap-frozen counterparts, three pairs of matched frozen and
FFPE xenografts tumors were profiled on the Illumina HiSeq
2000. The age of the FFPE blocks ranged from approximately
3 to 5 years old, and the fragmentation end point of the
isolated RNA samples was around 100–150 nucleotides
(Supplementary Figure 4). Degraded species, such as primary
and precursor miRNAs, that contain the same sequences as
their corresponding mature form can cause higher back-
ground noise. Hierarchical clustering showed similarity be-
tween the expression profiles of paired frozen and FFPE
samples (Spearman’s r40.93) (Figures 5a and b); however,
samples of different biological origin were less correlated
(Spearman’s ro0.82).

DISCUSSION
The growing number of studies examining the global changes
in miRNA expression suggests that these molecules are asso-
ciated with a variety of human diseases, such as neuro-
psychiatric disorders,41 diabetes42 and cancer.43,44 Recently, it
has also been shown that miRNA profiles of various cancer
types, including chronic lymphocytic leukemia,45 lung,46

breast47 and ovarian cancer48 may potentially contain
diagnostic and prognostic information.43,44 Accurately
detecting and quantifying these differences in miRNA
abundance between physiologically distinct states provides
insight into the role of these regulatory molecules in complex

biological processes and in the pathogenesis of diseases.
Although several technological options are available to
analyze miRNA expression comprehensively, the detection
of miRNAs and subsequent interpretation of such data can be
strongly influenced by the specific platforms used. An
informed perspective of the characteristics of these different
profiling tools could guide the choice of a platform best
suited to the biological question being investigated.

Our study examines the comparability of four miRNA
profiling platforms representative of different technologies,
which differ significantly in their mechanisms of detection.
Although both the Illumina microarray and the NanoString
system are based on the hybridization of miRNAs to a set of
predetermined probes, the former relies on static hybridi-
zation and binding intensity, and the latter depends on
in-solution hybridization and digital counting. Sequencing,
on the other hand, detects and quantifies the number of
miRNAs directly. The performance attributes of these pro-
filing technologies were evaluated using five pairs of cells
lines and their xenograft models. From this work, we con-
clude that (i) the concordance across miRNA profiling
technologies is, at best, only moderate, (ii) the optimal usage
of a given platform is dependent on the specific application
and (iii) NGS technologies show superior sensitivity, accu-
racy and robustness for global miRNA profiling in both
frozen and FFPE tissue.

A surprising observation from this study is the moderate
correlation between NGS platforms and NanoString.
Our expectation was that both these digital count technolo-
gies would generate highly similar expression profiles, but
the resulting interplatform correlation was only moderate
(rB0.50) (Figure 2). Furthermore, comparison of the
NanoString data to qPCR results yielded the lowest, but still

Figure 4 Technical reproducibility of microRNA (miRNA) sequencing. Reproducibility of next-generation sequencing (NGS) technologies for miRNA

profiling was evaluated by profiling samples in duplicates on the HiSeq 2500 system. (a) Spearman’s correlation coefficients between all samples were

calculated and subjected to unsupervised hierarchical clustering. The resulting heatmap and dendrogram show the high similarity between all technical

replicates, with r40.95 for all cases. Furthermore, all cell lines clustered together, separate from their xenograft counterparts. (b) The coefficient of

variation of the expression values between a set of technical replicates was calculated for miRNAs detected in both duplicates. The distribution of the

duplicate coefficient of variations (CVs) is compared with the CV between biological groups; replicate CV measures are lower.
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highly significant, correlation of 0.72 (Po2.2� 10� 16). Data
generated from similar platforms appear to be more
reproducible than those generated on considerably different
platforms—both microarray and sequencing, which include
PCR-based processing steps, were more correlated to each
other (r¼ 0.69–0.73) and to qPCR (r¼ 0.82–0.86) than to
NanoString (Figures 2 and 3). Thus, results obtained using
considerably different technologies are not always highly
concordant, compromising their comparability.

The sensitivity, specificity and dynamic range of detection
of a platform affect the identification of DE transcripts.
A platform with low sensitivity will generate many false-
negative calls, whereas higher sensitivity and reduced specificity
would result in a higher number of false positives. The low
sensitivity and small dynamic range of microarrays in com-
parison with other profiling tools limit their use in com-
parative analysis; strong fold-change compression affects the
ability to identify accurate changes in transcript abundance
between sample groups. Optimal use of microarrays for
comparative analysis should be limited to transcripts of
which differences in abundance fall within the boundary of
dynamic range. Alternatively, the lower sensitivity of Nano-
String for miRNA detection may be attributed to the miRNA-
specific protocol and assay. Although a starting RNA input of
100 ng (used to generate our data) may be sufficient for
mRNA profiling,13 this may be inadequate for the detection
of miRNAs, which represent only a small fraction (B0.01%)
of the mass in a total RNA sample.49 Assays that do not
involve amplification would require more starting material
because of lower detection sensitivity. In addition, a single
miRNA transcript can represent more than 50% of the counts
in a sample, as observed in our data. Using higher amount of
starting input RNA, which is reflected in the protocol change
by the UHN Microarray Centre, combined with a less
complex custom nCounter probe library, or a probe set with
highly abundant species attenuated, could potentially enhance

the signal from miRNAs of interest. Thus, the amplification-
free design of the NanoString platform may be better suited
for the interrogation of a smaller subset of miRNAs.

The sensitivity, large dynamic range of NGS, along with its
consistent prediction of fold changes when compared with
gold-standard qPCR, support its use for discovery-oriented
and exploratory miRNA profiling experiments. Furthermore,
high technical reproducibility (Spearman’s r40.95) eliminates
the need for technical replicates when profiling samples using
NGS technologies. Finally, we also show that miRNA expres-
sion profiles of samples that have been subjected to the
formalin fixation and paraffin-embedding process are highly
similar to their snap-frozen counterpart, even with the use of
different RNA extraction protocols. This will allow the use of
NGS technologies to evaluate tissues in the clinical setting
where FFPE blocks may be the only available sample type,
rendering these archival samples an invaluable source of
readily available tissue for retrospective studies of human
diseases.

Although microarrays and qPCR have been used
extensively for expression profiling and are highly re-
producible, they are limited to the detection of known targets
identified at the time of assay development and manu-
facturing. Furthermore, comparison of data generated on
different hybridization-based platforms is complicated by
their differences in miRBase content. High-throughput
sequencing provides an unbiased approach to miRNA pro-
filing, is less prone to batch effects, has a large dynamic range
of detection and avoids any cross-hybridization issues. With
the rapid increase in miRNAs being discovered and deposited
in public databases, NGS can offer a more comprehensive
view of the miRNA transcriptome.

Supplementary Information accompanies the paper on the Laboratory

Investigation website (http://www.laboratoryinvestigation.org)

Figure 5 MicroRNA (miRNA) sequencing of formalin-fixed, paraffin-embedded tissue (FFPE) specimen. Comparison of miRNA expression profiles

between matched frozen and FFPE specimen shows the validity of using next-generation sequencing NGS technologies for miRNA profiling of FFPE

blocks. (a) The distribution of expression values between matched pairs is much tighter than with other biological samples, with Spearman’s correlation

values of at least 0.93. (b) Unsupervised hierarchical clustering also shows high similarity between paired samples.
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