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The mitochondrial paradigm for cardiovascular disease
susceptibility and cellular function: a complementary
concept to Mendelian genetics
David M Krzywanski,*,1 Douglas R Moellering,*,2 Jessica L Fetterman1, Kimberly J Dunham-Snary1,
Melissa J Sammy1 and Scott W Ballinger1

While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of
genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote
CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This
review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the
standpoint that the original features that molded cellular function were based upon mitochondrial–nuclear relationships
established millions of years ago and were likely refined during prehistoric environmental selection events that today, are
largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related
diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial–nuclear
interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and
evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally,
future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for
addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for
mitochondrial function that increased chances for prehistoric human survival and reproductive success.
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With the exception of the worldwide Spanish influenza epi-
demic of 1918, cardiovascular disease (CVD) has been the
leading cause of mortality and morbidity in the United States
every year since 1900.1 Consequently, many studies have
investigated the potential causes of CVD, and it is generally
accepted that oxidative stress mediated changes within the
cardiovascular milieu are among the most popular postulated
mechanisms of CVD development.2–7 Oxidative stress is
caused by a collective grouping of reactive oxygen and
nitrogen species (ROS and RNS, respectively) that are capable
of disrupting cell function and exerting cytotoxic effects
when generated in amounts beyond the antioxidant capacity
of the cell. The concept that oxidative stress is important in
the pathogenesis of CVD was conceived from studies that
noted the cytotoxic and atherogenic properties of oxidized

LDL (oxLDL) cholesterol.8–12 Subsequently, it became
apparent that vascular dysfunction can be linked to increased
oxidant stress; oxidant stress can have several biological
effects, including the peroxidation of polyunsaturated fatty
acids in membrane or plasma lipoproteins, direct inhibition
of mitochondrial respiratory chain enzymes, inactivation of
membrane sodium channels, and DNA damage.2,3,5–7,13–22

These findings are consistent with the notion that CVD risk
factors increase oxidative stress and contribute to a pro-
inflammatory environment.5,11,12,23–35 Whereas the majority
of these studies regard atherosclerotic disease, oxidative stress
also has been implicated as an important factor in many
other forms of cardiovascular-related maladies, including
hypertension and cardiometabolic disease/syndrome.36–39

Although atherosclerosis and hypertension are often
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pathologies ultimately associated with cardiometabolic syn-
drome, individuals with hypertension or atherosclerosis do
not always have cardiometabolic disease. The classic traits of
visceral obesity and insulin resistance are associated with
cardiometabolic syndrome, although other traits typically
linked with metabolic syndrome are common as well.
Multiple early definitions of metabolic syndrome have been
related from different organizations including: the Interna-
tional Diabetes Federation (IDF),40 the revised National
Cholesterol Education Program (NCEP; ATP III criteria),41

the World Health Organization (WHO),42 and the European
Group for the Study of Insulin Resistance (EGIR).43 Based on
a joint interim statement in 2009 from the American Heart
Association (AHA), National Heart Lung Blood Institute
(NHLBI), World Health Federation, International Athero-
sclerosis Society, International Association for the Study of
Obesity, and IDF consensus statement,44 the criteria for
clinical diagnosis of the metabolic syndrome include having
three of five of the following (or drug treatment for them):
some form of insulin resistance (impaired glucose tolerance
or impaired fasting glucose (Z100mg/dl)), hypertension
(systolic Z130 and/or diastolic Z85mmHg), dyslipidemia
(higher triglycerides (Z150mg/dl, 1.7mmol/l), and lower
HDL (males o40mg/dl, 1.0mmol/l; females o50mg/dl,
1.3mmol/l)), and country-specific elevated waist cir-
cumference and abdominal obesity (USA, AHA/NHLBI ATP
III thresholds: males Z94–102 cm; females Z80–88 cm)
and all of these risk factors have been linked to oxidative
stress.45–48 Among the potential cellular origins of oxidative
stress, studies have shown multiple sources to be important,
including NAD(P)H oxidase, xanthine oxidase, and myelo-
peroxidase.13,49–60 More recently, the mitochondrion, both a
source and target of oxidants related to CVD development,
has garnered attention.61–73

THE MECHANISMS OF INDIVIDUAL CVD SUSCEPTIBILITY
ARE NOT CLEARY UNDERSTOOD
While significant progress in understanding the pathology,
progression, and development of CVD has been made, the
determinants of why some individuals with identical CVD
risk factor profiles develop disease while others will not are
not clearly understood. Currently, o5% of CVD appears to
result from single mutations, such as those regulating lipo-
protein synthesis.74,75 It has been estimated that 70–80% of
CVD is attributable to modifiable, non-genetic factors,
which is consistent with the notion that environmental fac-
tors heavily influence the risk of disease development.74

In addition to endogenous and environmental risk factors
(ie, hypercholesterolemia and tobacco smoke exposure, re-
spectively), CVD susceptibility is also increased by age, family
history,76–81 and ethnicity (reviewed in Forouhi and Sattar82).
Some studies have shown that differences in cardiovascular
function exist between racial groups; however, the basis of
these differences is currently unclear.83–88 Consequently, it is
thought that CVD is a multifactorial disorder that involves

both environmental and genetic factors.89,90 A corollary of
this idea, however, is that individual response to environ-
mental factors can be genetically influenced.

The Mendelian concept, or the ‘common disease, common
variants’ hypothesis suggests that common forms of disease
such as CVD have a multifactorial and polygenic basis: ge-
netic variants present in many normal individuals, each with
a relatively small effect, alone, or in combination with
modifier genes and environmental factors contribute to
overall CVD risk.89,90 Hence, it has been hypothesized that
multiple genes involved in vascular regulation, lipoprotein
metabolism, inflammation, metabolic control, and redox
tone (the balance between oxidant generation and neu-
tralization by antioxidants) and their interaction with risk
factors influence CVD susceptibility.77,78 In this regard, stu-
dies have looked for connections between polymorphic gene
mutations and CVD development. However, many original
associations were lost in larger-scale studies, or were not as
predictive for risk as plasma markers such as cholesterol
levels.75,91–97 Consequently, while important in advancing
the understanding of gene ‘groups’ that may be involved in
influencing predilection to disease development, the under-
lying genetic and physiologic basis of why these differences
exist is not well understood.

Because CVD usually develops over decades, its etiology
should entail subtle changes in the vascular/endothelial en-
vironment over time, collectively resulting in the initiation
and progression of disease. Therefore, features of CVD
development should involve genetic and cellular mechanisms
that (i) have important roles in multiple cell functions in-
volving the regulation and expression of multiple genes
(eg, growth, death, signaling, and bioenergetics); (ii) are
capable of gradual decline or dysfunction over time
(an ‘aging’ mechanism); (iii) are susceptible to oxidative damage
(risk factors); and (iv) explain risk associated with ethnicity.

The mitochondrion and its genome may account for these
features in CVD development. The mitochondrion (i) is a
multifunctional organelle, which is a central focal point for
proper cell function due to its role in energy production, cell
growth, apoptosis, thermogenesis, and redox signaling98–102;
(ii) has an ‘aging’ mechanism—there are thousands of copies
of mitochondrial DNA (mtDNA) per cell, allowing for the
accumulation of mtDNA mutations and damage over time
that cause an age-related decline in mitochondrial func-
tion103,104; (iii) is vulnerable contemporary CVD risk factors
and oxidative stress, which increase mitochondrial damage
and alter function in cardiovascular tissues61–64; and
(iv) harbors the mtDNA, which displays marked regional
variation and has proven useful in population and molecular
anthropological studies.105 By contrast, most ancient nDNA
polymorphisms are common to all global populations.106

Similarly, maternal family history of CVD has also been
reported to convey greater risk than paternal history.77–81

Although this association is controversial and has been sug-
gested to be due to offspring–maternal nutritional effects that
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were experienced in utero,107,108 studies of in utero risk factor
exposure have shown mtDNA damage.64 Consequently, these
observations are consistent with the notion that mitochon-
dria have significant roles in the etiology of CVD.

MITOCHONDRIA ARE MULTIFUNCTIONAL ORGANELLES
Mitochondria are ancient bacterial endosymbionts with their
own DNA, RNA, and protein synthesis systems.109

Mitochondria are multifunctional organelles, and serve as
the sites for electron transport, oxidative phosphorylation
(OXPHOS), the citric acid cycle, b-oxidation, steroidogen-
esis, and many other important cellular functions including
growth, oxidant generation, and programmed cell death.102

In fact, the primary function of the mitochondrion is de-
pendent upon the current requirements and environment of
the cell. For instance, the primary function of a mitochon-

drion within an endothelial cell may be the regulated
generation of oxidants for cell signaling, whereas within a
cardiac myocyte, it may be the generation of ATP, or, a
combination of functions therein (eg, ATP and oxidant
generation). This unique feature of mitochondrial functional
biology makes it the central focal point in terms of the
mechanistic basis of many forms of age-related diseases,
including CVD.

Mitochondria fundamentally execute the conversion of
caloric energy into molecular energy, thermal energy, and
oxidants (Figure 1). They achieve these tasks by coupling
electron transport with proton translocation and OXPHOS.
The energy released during the movement of electrons along
the electron transport chain (ETC) is used to pump protons
across the inner membrane at complexes I, III, and IV, which
creates a transmembrane electrochemical gradient. This
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potential energy is utilized by ATP synthase (complex V) to
condense ADP and Pi to form ATP. The energy not utilized
for proton pumping is lost in the form of heat (thermo-
genesis). Electrons are also donated directly to oxygen (O2)
during electron transport to form superoxide (O2

.�), which
can be converted to hydrogen peroxide (H2O2) and con-
tribute to cell redox signaling processes, or in the presence of
nitric oxide (.NO), form peroxynitrite (ONOO�), an oxidant
that can react with carbon dioxide (CO2) to form
nitrosperoxycarbonate (ONOOCO2

�), a nitrating agent.24,110

Each cell contains hundreds to thousands of mitochondria
and each mitochondrion contains 5–10 copies of maternally
inherited mtDNA. The mammalian mtDNA encodes 13
polypeptides, two rRNAs (12S and 16S) and 22 tRNAs
that are essential for OXPHOS and proper cell function
(Figure 2). The nucleus encodes all the remaining
mitochondrial proteins for the organelle. Interestingly,
the mtDNA retained key structural subunits required for
the catalytic activity for four of the five OXPHOS
enzyme complexes (I, III, IV, and V). Consequently, muta-
tions in these mtDNA-encoded subunits could alter features
in mitochondrial metabolism or economy (bioenergetic
function).

MITOCHONDRIAL ECONOMY
Mitochondrial economy describes how the organelle utilizes
the oxygen it consumes in terms of molecular (ATP) and
thermal energy production, plus oxidant generation. This
economy is therefore dependent upon a myriad of factors
including local concentrations of both reactive nitrogen and
oxygen species, mitochondrial antioxidants, cytokines, elec-
tron transport efficiency, metabolic reducing equivalent
availability (NADH, FADH2, and those from b-oxidation of

fatty acids), cellular energetic demand, uncoupling protein
(UCP) activities, and overall organelle integrity (damage to
membranes, DNA, and proteins). Among these factors,
electron transport efficiency as it relates to overall ‘mi-
tochondrial economy’ has received limited attention and has
not been considered seriously in relation to CVD develop-
ment. Mitochondria that utilize less oxygen to generate the
same amount of ATP compared with mitochondria that use
more oxygen for ATP production are, relatively speaking,
more economical. Hence, economical mitochondria will have
a higher ATP/O2 compared with those that are relatively less
economical. Under conditions of excess substrate and low
energetic demand (positive energy balance), mitochondria
with high ATP/O2 will have a greater proportion of electron
carriers in a reduced state (occupied by electrons) compared
with those with lower ATP/O2 and thus, will be more prone
to donate electrons to oxygen to form oxidants and are
suggested to include African haplotypes (Figure 3, higher
mitochondrial economy). However, under chronic condi-
tions of substrate excess and low energetic demand, even
mitochondria that are less economical will generate increased
oxidants. Mitochondria with low ATP/O2 utilize more elec-
trons and O2 to generate ATP, resulting in greater energy loss
in the form of heat compared with those with higher ATP/O2

and are suggested to include Eurasian and northern mi-
gratory haplotypes (Figure 3, lower mitochondrial economy).

PREHISTORIC SELECTION, MITOCHONDRIAL ECONOMY,
AND EVOLUTION
As humans migrated from Africa, they encountered
changes in climate and diet as they moved northward.111,112

To successfully survive and reach reproductive age, it was
necessary to develop a biological system to deal with these

Figure 1 (a) Fundamental aspects of mitochondrial function. Caloric energy (carbohydrates and fats) is converted into molecular (ATP) and thermal (heat,

energy lost during electron transport) energy and oxidants (reactive oxygen species (ROS)). While ATP is utilized for energy requiring cell functions,

mitochondrial generated ROS influence redox cell signaling processes, including induction of nuclear gene expression (via redox sensitive transcription

factors), which contribute to cell function. Differences in mtDNA sequences are proposed to influence mitochondrial oxygen utilization (economy) and ROS

production that impact cell function. The conversion of caloric energy into these respective components is dependent on overall organelle economy

(influenced by the mtDNA-encoded subunits), degree of positive or negative energy balance, and uncoupling proteins. ATP and ROS are utilized for cellular

functions (energy requiring processes and redox signaling); mitochondrial ROS also serve as a means for communication to the nuclear compartment and

regulation of certain nuclear genes. (b) Carbohydrates are metabolized to glucose that is further converted to pyruvate (glycolysis) in the cytoplasm and

transported into the mitochondrion. Acetyl CoA is formed from pyruvate via oxidative decarboxylation (pyruvate dehydrogenase), where it enters the citric

acid cycle that yields reducing equivalents (NADH and FADH2) for electron transport located within the mitochondrial inner membrane. NADH is oxidized at

complex I (NADH:coenzyme Q oxidoreductase or NADH dehydrogenase) of the transport chain while FADH is oxidized at complex II (succinate:coenzyme Q

oxidoreductase or succinate dehydrogenase, part of the citric acid cycle). Electrons are next passed to coenzyme Q (Q). Complex III (coenzyme

Q:cytochrome c oxidoreductase or cytochrome bc1 complex) passes electrons from reduced coenzyme Q (Q) to cytochrome c (c), a peripheral membrane

protein that alternately binds cytochrome c1 (of complex III) and to complex IV (cytochrome c oxidase). Complex IV catalyzes the one electron oxidations of

four consecutive reduced cytochrome c molecules and the concomitant four electron reduction of one O2 molecule to yield H2O. During electron transport,

protons are pumped across the inner membrane from the matrix into the intermembrane space, creating an electrochemical gradient. The free energy

resulting from this gradient is utilized to condense a molecule of inorganic phosphate (Pi) with ADP at complex V (ATP synthase or F1F0—ATPase) to yield

ATP. ATP is subsequently transported out of the matrix by the inner membrane bound adenine nucleotide translocase (ANT) with the exchange of ADP. Fats

bypass glycolytic metabolism in the cytoplasm and undergo b-oxidation in the mitochondrion to yield acetyl CoA (plus NADH and FADH2 per cycle of

oxidation), which enters the citric acid cycle to generate substrates for electron transport. During electron transport, superoxide (O2
.�) is generated

when electrons are added to O2; O2
.� is converted to hydrogen peroxide (H2O2) in the mitochondrion by manganese superoxide dismutase (MnSOD or

SOD2). H2O2 (which is freely diffusible) can participate in cell signaling processes (H2O2 levels are regulated by a number of antioxidants within the

mitochondrion and the cell, not illustrated). Alternatively, O2
.� reacts with nitric oxide (.NO) to form peroxynitrite (ONOO�), an oxidant, which in the

presence of carbon dioxide (CO2) forms nitrosoperoxycarbonate (ONOOCO2
�), a nitrating agent.
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challenges. Consequently, selective pressures on prehistoric
humans were exclusively related to reproductive success and
survival of their offspring to reproductive age. Post-re-
productive challenges beyond the successful rearing of off-
spring to reproductive age were not major selective pressures
in a genetically adaptive sense. As our ancestors moved
northward, they accumulated a greater frequency of mtDNA
missense mutations relative to silent substitutions.100,113 It
has been proposed that these mutations altered aspects of
mitochondrial economy that enabled these northern mi-
grants to generate more heat/calorie consumed.99,100,113

These changes were tolerated because the diet of these mi-
grants changed from a low-protein, low-fat vegetarian diet to
a high-protein, high-fat diet consisting of animal fats111,112;
hence, the decreased ATP generation/calorie (due to in-
creased heat production) associated with these mtDNAs may
have been offset by higher caloric intake. Consequently, by
changing aspects of mitochondrial function in settings of
warm climates and vegetarian diets to a system designed to be
more thermogenic in a setting of cold climates with increased
caloric intake, these changes in mitochondrial function may
have contributed to increased probability for survival of the
young to reproductive age.

Changes in mitochondrial function and/or protein levels
associated with specific animal adaptations in vertebrates

have been previously noted. For example, hibernating 13-
lined ground squirrels (Spermophilus lateralis) demonstrate
upregulated nad2 (mitochondrial-encoded ETC complex I
subunit) mRNA in heart, liver, and skeletal muscle during
hibernation114 coincidental with 95% decreased metabolic
rate compared with resting levels and decreased core body
temperature maintained below 10 1C.115 Smaller mtDNA-
encoded cytochrome b and c spectra in S. lateralis liver mi-
tochondria have also been reported during hibernation,
which may decrease the capacity of complex III116 affecting
ROS formation and CVD,117 mtDNA damage, and retrograde
signaling (discussed below in ‘The implications of the mi-
tochondrial paradigm y and disease development’). In an
avian model, the bar-headed goose (Anser indicus) that mi-
grates over the Himalayas (altitudes up to 9000m) must
sustain high metabolic rates in the context of severe hypoxia.
A. indicus has evolved more subsarcolemmal mitochondria
bordering capillaries with increased densities within
increased numbers of oxidative fibers, enabling them to
sustain high metabolic rates for flight under hypoxic condi-
tions compared with low-altitude birds.118 This evolutionary
adaptation to hypoxia has more recently been shown to
involve decreased maximal cytochrome c oxidase (COX)
activity, a higher affinity of COX for reduced cytochrome c,
and proportional decreases in COX3/COX1 and COX4/
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COX3 protein expression. The decreased COX3 subunit
(mtDNA encoded) in the bar-headed goose also has a non-
synonymous substitution at a conserved site in vertebrates,
which based on structural modeling suggests it would alter
the interactions of COX3 and COX1 accounting for
the increased economy and evolutionary mechanisms of
high-altitude adaptation.119 Finally, although not extensively
studied, aspects of adaptive evolution of the mtDNA-
encoded subunits across placental mammals has been
examined, potentially providing a framework for future
characterization of mtDNA mutations in regard to their
impact on cellular function and physiology.120

MITOCHONDRIAL OXIDANT PRODUCTION
The perception that mitochondrial oxidant production is
analogous to ‘pollution’ or an unnecessary by-product of
electron transport is inaccurate. While many reports
have implicated mitochondrial oxidant generation as
an important form of cellular stress that contributes
to disease development, which is certainly a correct
interpretation,65,66,68,70,72,121–145 it also reflects a con-
temporary viewpoint. Mitochondrial produced oxidants
most likely originally served as a signaling system for the
benefit of the host (the eukaryotic cell), a concept that has
not been widely contemplated. From an evolutionary
perspective, the cellular functions of the mitochondrion
developed over millions of years of endosymbiosis with its
nucleated host. Because it is possible that our proto-
eukaryotic ancestors spent a significant amount of time
during their evolutionary existence under conditions of

limited caloric availability, they likely evolved systems of
mitochondrial–nuclear interactions designed for increased
survival and reproductive success under conditions of
punctuated caloric restriction. Consequently, selection for a
system that had a rapid feedback/signaling mechanism
(production of oxidants) linked to energy production that
would induce caloric storage when energetic demands were
met would be strong. This notion would suggest that mi-
tochondrial oxidants may have originally served as stimuli for
(i) insulin production and (ii) signaling molecules for insulin
signaling pathways in non-insulin producing tissues. Hence,
the mitochondrial oxidants may have initially served as a
means for regulating caloric utilization and storage. Under
conditions of excess substrate and low cellular energetic
requirements (positive energy balance), mitochondria would
increase oxidant production, triggering signaling pathways
that would have led to storage of calories.146–150 As energy
demand increased or food availability became low, mi-
tochondrial oxidant production would decrease, as would
caloric storage pathways. In this regard, studies have shown
that mitochondrial oxidant generation or the alteration of
mitochondrial UCP levels can impact insulin secretion and
also affect aspects of insulin sensitivity.68,147,151,152 While
many studies have also shown that mitochondrial oxidant
production inhibits insulin production and sensitivity, these
studies are often performed under chronic conditions of
hyperglycemia and therefore represent contemporary stress
factors rather than prehistoric. Regardless, studies have
shown that a connection exists between mitochondrial oxi-
dant production and insulin secretion,153,154 and more recent
work suggests that oxidants impact insulin signaling
pathways in non-insulin producing tissues.146,155,156 A final
consideration is that these systems were designed to increase
survival for reproductive purposes and hence, may function
more robustly in the young (by virtue of their importance for
survival and from a gene pool perspective). This concept is
supported by the observation that insulin sensitivity is higher
in the young compared with old.157

THE IMPLICATIONS OF THE MITOCHONDRIAL
PARADIGM FOR CONTEMPORARY SOCIETY AND
CONCEPTS OF DISEASE DEVELOPMENT
As previously discussed, it has been hypothesized that
mtDNA mutations fixed into prehistoric populations altered
aspects of mitochondrial economy that enabled our ancestors
to survive and reproduce at different geographic latitudes
and diets.100 Today, these variants in mitochondrial function
may influence individual disease susceptibility due to dif-
ferences in mitochondrial oxidant production related to
mtDNA haplotype.100,158 With the development of greater
physical inactivity, increased lifespan and excessive caloric
intake seen in Western societies, these variants in mi-
tochondrial function and genetics may influence predis-
position toward disease development. Individuals with
greater mitochondrial economy will have increased basal
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levels of endogenous mitochondrial oxidant stress under
conditions of excessive caloric intake, physical inactivity
(positive energy balance, Figure 3), and exposure to CVD risk
factors compared to those with less economy and thus, will
appear more susceptible to diseases related to oxidative stress
such as CVD. Furthermore, those individuals with less mi-
tochondrial economy will appear less susceptible to diseases
related to oxidative stress, yet will not be completely immune
to such disease under conditions of high caloric intake and/
or physical inactivity (Figure 3). Chronic, excessive caloric
intake and low energetic demands will still result in sustained
mitochondrial oxidant generation over time that will induce
cellular damage; hence even those individuals with lower
mitochondrial economy will potentially develop CVD or
cardiometabolic diseases with persistent exposure to these
stressors. Conversely, individuals harboring mitochondria
with greater economy will be more tolerant toward caloric
restriction compared with those having less economy
(Figure 3, negative energy balance). This of course, sets up
the dilemma that individuals more prone for weight gain
under conditions of positive energy balance will be also more
resistant to weight loss under conditions of negative energy
balance although it has been shown that regular steady ex-
ercise may prevent or diminish the influence of mtDNA
haplotype on some physiologic measures including aerobic
capacity159 and ROS-induced damage to skeletal muscle.160

Evidence supporting these concepts is becoming re-
cognized; several studies have shown that specific mtDNA
mutations and haplotypes are associated with differences in
oxygen consumption, increased risk for diseases thought
or known to have an environmental component (eg, deaf-
ness, blindness, Alzheimer’s disease, diabetes, and
cancer).104,160–181 Similarly, studies have shown that the
mtDNA haplotype can influence tumor growth and age-
related deafness in mice.182,183 It has also been suggested that
human longevity significantly co-segregates with mtDNA
haplotypes that have temperate and arctic origins,174,175 yet
they may have increased predilection for clinical illnesses
associated with energetic insufficiencies such as blindness
and CNS defects.100 Alternatively, mitochondrial haplotypes
thought to be associated with increased mitochondrial
economy may be more prone to certain types of cancer and
age-related diseases associated with oxidative stress and/or
somatic mutation.100,182 More recent studies suggest a link
between mtDNA haplotypes and CVD in certain popula-
tions.184 While studies in cybrid culture have provided con-
flicting results regarding the concept that the mtDNA
influences cellular bioenergetics,158,185–187 studies in con-
plastic strains of mice suggest that mtDNA background
influences aspects of cognition, behavior, reproductive
behavior, and susceptibility to autoimmune disease.188–191 An
extension of the concept that the mtDNA alters organelle
economy (bioenergetics), which influences disease suscept-
ibility, is that it may also have a role in modulating nuclear
gene expression since the majority of proteins functioning

within the mitochondrion are encoded by the nucleus. If this is
the case, it would represent another historical clue regarding
the evolution of the eukaryotic cell and endosymbiosis, and
thus, provide the basis for an additional paradigm in that the
mtDNA influences the selection of certain nuclear–mi-
tochondrial gene combinations and mitochondrial retrograde
signaling.192–194 If true, this would have serious implications
regarding the use of transgenics derived from different strains
of mice (eg, backcrossing one strain on the background of
another) and there are likely to be tissue-specific effects on
mitochondrial–nuclear signaling195–197 influenced by energy
balance, ROS, exercise, and diet.

THE ROLE OF DIET AND MITOCHONDRIAL FUNCTION
The composition and caloric content of the diet likely
influence mitochondrial and cellular interactions. Excessive
caloric intake without increased energy expenditure (a net
positive energy balance) will result in increased weight gain,
oxidant stress, and disease risk. While the effects of positive
energy balance on mitochondrial function are a matter of
debate concerning the question of whether mitochondrial
dysfunction or positive energy balance drives the develop-
ment of insulin resistance, diabetes, and cardiometabolic
diseases,198–202 it is evident that caloric restriction decreases
mitochondrial oxidant production and cardiovascular
risk.203–205 Interestingly, it has also been shown that me-
thionine restriction without caloric restriction can decrease
mitochondrial oxidant production and mtDNA damage in
rodents,206–208 while the same percent of carbohydrate does
not.209,210 In contrast, methionine supplementation in rats
has been shown to increase ROS production and mtDNA
damage in rat liver but not the heart.211 Diets with higher
unsaturated/polyunsaturated fat content (ie, fats from nat-
ural vegetable oils, nuts, and fish) compared to those with
higher saturated fat (pork, beef, chicken, dairy, eggs, coconut
oil, and some seafood) have been shown to decrease
CVD,212–215 and decrease mitochondrial ROS production.216

Polyphenols such as resveratrol contained in red grapes, red
wine, and peanuts have been shown to induce mitochondrial
biogenesis through activation of sirtuin-1 (NAD-dependent
deacetylase sirtuin-1 or SIRT1) and peroxisome proliferator-
activated receptor g coactivator 1-a (PGC-1a),217 improving
health, survival, and decreasing diabetic complications.218,219

Coincidental with dietary and mitochondrial interactions are
conflicting reports regarding low-carbohydrate vs low-fat
diets and their effects on disease progression. Ketogenic diets,
high-fat with adequate protein and low-carbohydrates, mi-
mic caloric restriction by forcing the body to burn fats rather
than carbohydrates and have been shown to decrease mi-
tochondrial ROS production through increased NADH oxi-
dation.220 Ketogenic diets are clinically used to treat many
acute and chronic neurological diseases such as stroke,221

epilepsy,222,223 mitochondrial myopathy,224 and CVD.225

The interaction of diet on mitochondrial function
and bioenergetics in general involves the capability of the
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mitochondria to effectively and rapidly signal to the cell that
excess reducing equivalents exist (high cytosolic NADH/
NADþ and ATP/AMP). This has been shown to occur in
both rodents and humans through low level mitochondrial
ROS generation.146,226 Hoehn et al146 also demonstrated in-
creased MnSOD expression improved glucose and insulin
tolerance in mice fed high-fat diets compared with controls.
Further, evidence from that study suggests that mitochon-
drial ROS production (which would be higher under con-
ditions of excess reducing equivalent availability and low ATP
demand) may serve as a cell signal that decreases GLUT4
translocation to the cellular plasma membrane and induces
temporary insulin resistance (by limiting cellular glucose
uptake) in adipocytes and myotubes.146 Decreased influx of
glucose would decrease NADH/NADþ , increase AMP/ATP,
stimulate increased flux of electrons through the ETC, de-
crease membrane potential, and decrease ROS formation.
However, under conditions of persistent positive energy
balance, individuals with increased adiposity would also
supply reducing equivalents via b-oxidation, and chronic
ROS formation would ensue, contributing to post-transla-
tional oxidation of lipids, proteins and mtDNA, down-
regulation of metabolism, and vicious cycle of ROS-mediated
mitochondrial dysfunction.

Under positive energy balance, excess reduced carbohy-
drates, fats, and other foodstuffs lead to a chronic cellular
redox shift toward an overload of reduced cytosolic NADH
creating a ‘reductive stress.’227 Elevated levels of these high
energy electron carriers, NADH, and the reduced form of
flavin adenine dinucleotide, FADH2, would come from gly-
colysis and the Krebs cycle. Under these circumstances, most
dehydrogenases and all NADþ -dependent enzymes would
function abnormally because of the relative deficiency of
NADþ and inhibitory feedback mechanisms well described
in most biochemistry textbooks. The NADH/NAD varies in
response to changes in metabolism228–230 and is often used as
a measure of the intracellular redox or metabolic state of the
organism.231 Since NADH cannot penetrate the inner mi-
tochondrial membrane directly, various shuttling mechan-
isms exist to transport the NADH reducing equivalents into
the mitochondria for oxidation. The malate-aspartate shuttle
is required in yeast for increased life span mediated through
calorie restriction.232 Mitochondrial glycerol-3-phosphate
shuttle also helps to funnel cytosolic reducing equivalents to
the mitochondria for respiration233 and when knocked out in
plants has been shown to increase the NADH/NAD ratio.234

Carbohydrate metabolism generates a ratio of 5 NADH/
FADH2 (per pyruvate), while fat metabolism generates a
ratio of 2 NADH/FADH2 (per acetyl CoA), which feed into
the ETC at complex I for NADH and succinate dehy-
drogenase (complex II) for FADH2. These reducing equiva-
lents converge on coenzyme Q and complex III.
Mitochondrial oxidant production has been shown to ori-
ginate from complexes I and III of the ETC235–239 through
both forward and reverse electron flux.240,241 Hence, under

conditions of excess reducing equivalents and low energy
demand (positive energy balance), a ‘bottleneck’ can occur at
coenzyme Q and complex III that increases cytosolic NADH/
NADþ , mitochondrial membrane potential, and ROS for-
mation.242 Moreover, it is possible that these effects are
compounded in overweight individuals by virtue of their
increased adiposity, which further contributes to reducing
equivalent availability through b-oxidation. Consistent with
the notion that coenzyme Q may have an important role in
modulating the effects of excess reducing equivalent avail-
ability are reports that mitochondrially targeted coenzyme Q
supplementation protects against endogenous oxidative
stress243 and that supplementation of CoQ has helped alle-
viate myopathic symptoms.244 Interestingly, coenzyme Q
deficiency may exacerbate cardiometabolic,245 neurologi-
cal,246 and other diseases including diabetes and cancer.247 It
has also been reported that coenzyme Q deficiency induces
mitochondrial degradation by mitophagy.248

SUMMARY
While there has been significant progress in understanding
the pathological processes involved in CVD progression and
development, the continuing status of CVD as the leading
cause of death and morbidity in the Western world for the
past century implies a lack of understanding regarding the
basis of individual CVD susceptibility. Numerous studies
have delineated important CVD risk factors, and although
there is general agreement that they share a common feature
of increasing vascular oxidant stress, the actual mechanistic
basis of how they initiate or promote CVD development in
some individuals and not in others with identical risk profiles
is not clearly understood. It is widely thought that CVD
development is influenced by a combination of genetic, en-
vironmental, and behavioral factors that influence an in-
dividual’s biological response to known disease risk factors.
A consideration currently lacking from these analyses is
the potential role for mitochondrial genetics and function
in determining CVD susceptibility. The mitochondrion is
directly involved in the inter-relative aspects of caloric
conversion to energy, thermogenic output, and oxidant
production, and has been previously shown in numerous
studies to be associated with cardiovascular dysfunction.
Another aspect not commonly considered is that mi-
tochondrial–nuclear relationships were established millions
of years ago and were likely refined during prehistoric en-
vironmental selection events that today are largely absent. By
contrast, contemporary risk factors that influence our sus-
ceptibility to a variety of age-related diseases, including CVD
were probably not part of the ‘equation’ so to speak, that
defined the processes of mitochondrial–nuclear interaction.
Consequently, these diseases that are mostly post-
reproductive are the by-product of our rapidly changing
environment induced by technology; an environment for
which our eukaryotic system was not designed. In this regard,
the selective conditions that contributed to cellular
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functionality and evolution should be given more con-
sideration when interpreting and designing experimental
data and strategies. Finally, future studies that probe beyond
epidemiologic/molecular epidemiologic associations are re-
quired. These studies will serve as the initial steps for ad-
dressing the provocative concept that contemporary human
disease susceptibility is the result of selection events for mi-
tochondrial function that increased chances for prehistoric
human survival and reproductive success.
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