
Integrins mediate adhesion of medulloblastoma cells
to tenascin and activate pathways associated with
survival and proliferation
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Medulloblastoma spreads by leptomeningeal dissemination rather than by infiltration that characterizes other CNS
tumors, eg, gliomas. This study represents an initial attempt to identify both the molecules that mediate medullo-
blastoma adhesion to leptomeninges and the pathways that are key to survival and proliferation of tumor following
adhesion. As a first step in molecule identification, we produced adhesion of D283 medulloblastoma cells to the
extracellular matrix (ECM) of H4 glioma cells in vitro. Within this context, D283 cells preferentially expressed the a9 and b1
integrin subunits; antibody and disintegrin blockade of a9 and b1 binding eliminated the adhesion. The H4 ECM was
enriched in tenascin, a binding partner for the a9b1 integrin heterodimer. Purified tenascin-C supported D283 cell
adhesion. The adhesion was blocked by antibodies to a9 and b1 integrin. In vivo data were similar; immunohistochemistry
of primary human medulloblastomas with leptomeningeal extension demonstrated increased expression of a9 and b1
integrins as well as tenascin at the interface of brain and leptomeningeal tumor. These data suggest that tumor-cell
expressions of a9 and b1 integrins in combination with extracellular tenascin are necessary for medulloblastoma adhesion
to the leptomeninges. As a first step in the identification of pathways that mediate survival and proliferation of tumor
following adhesion, we demonstrated that adhesion to H4 ECM was associated with survival and proliferation of D283
cells as well as activation of the MAPK pathway in a growth factor deficient environment. Antibody blockade of a9 and b1
integrin binding that eliminated adhesion also eliminated the in vitro survival benefit. These data suggest that
adhesion of medulloblastoma to the meninges is necessary for the survival and proliferation of these tumor cells
at the secondary site.
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Leptomeningeal dissemination, the spread of cerebellar me-
dulloblastoma to the surface of the central nervous system
(CNS), predicts poor patient outcome.1,2 The process of lep-
tomeningeal dissemination is distinct from the tissue infiltration
that characterizes the spread of other CNS tumors, eg, gliomas.3

In leptomeningeal dissemination, tumor cells migrate from the
primary site to the surface of the brain and spinal cord, adhere
to these secondary sites, and establish new colonies.4 Risk fac-
tors for leptomeningeal dissemination have been identified5–7

and some recent studies suggest that expression of ERBB2,
PDGFR-a, and PDGFR-b stimulates the migration of me-
dulloblastoma cells.6,8 However, the mechanisms of adhesion
and survival following spread are not understood.

Adhesion of medulloblastoma cells to the leptomeninges
has received little attention since the 1990s. Early investiga-
tions suggested a promising in vitro model for lepto-
meningeal dissemination: in a series of articles from 1986 to
1988, Rutka et al 9–14 produced medulloblastoma adhesion to
the leptomeningeal extracellular matrix (ECM) in a cell
culture model. These investigators identified key proteins in
ECM, including fibronectin, procollagen III, laminin, and
collagen IV; however, the relatively small number of adhesion
factors recognized at that time precluded identification
of the specific molecules that mediate attachment. In 1991,
Wikstrand, Friedman, and Bigner explored adhesion of
six different medulloblastoma cell lines to three proteins
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(fibronectin, laminin, collagen IV) and Matrigel, but could
not replicate Rutka et al’s success in producing adhesion
to these proteins.15 We found no published studies of
medulloblastoma adhesion to the leptomeninges after 1991.

Understanding of cell adhesion in the nervous system has
progressed significantly during the past 15 years.16,17 Of
particular relevance to leptomeningeal dissemination is the
identification of the three largest families of neural adhesion
molecules, N-cadherins, N-CAMs, and integrins. Medullo-
blastomas express all three of these molecules18–23 but
available evidence suggests that not all three mediate lepto-
meningeal dissemination. N-cadherins and N-CAMs bind
homophilically to form N-cadherin–N-cadherin and
N-CAM–N-CAM bonds; these pairings may mediate cell–cell
adhesion within the primary tumor.15 However, the minimal
expression of N-cadherins and N-CAMs in the meninges24–26

suggests that these molecules are unlikely mediators of
medulloblastoma adhesion to the meningeal surface. In
contrast, integrins bind to a range of ECM proteins, many
of which are expressed in the leptomeninges. These include
collagens I,11,27 III,9,11,14 IV,11,25,27 and VI;28 procollagen III;11

fibronectin;11,26 tenascin;29 laminin;11,25,27,30 vitronectin;31

and thrombospondin.32 Integrins are also critical to the
adhesion of other cancers that disseminate by surface
spread rather than by infiltration, eg, ovarian cancer and
mesothelioma.33–36 We hypothesized a similar role for in-
tegrins and ECM proteins in leptomeningeal dissemination,
ie, specific integrin–ECM protein pairings are necessary for
the adhesion of medulloblastoma cells to the meninges.

The Akt and MAPK pathways are mediators of the survival
and proliferation of many disseminated cancers but their
role in disseminated medulloblastoma has not been
investigated.37 When growth factor is available, the two
pathways are activated independently; Akt is activated by
integrins following adhesion to ECM and MAPK is activated
by soluble growth factors (Figure 1). However, in a growth
factor poor environment, both are activated by integrins
following adhesion.37 Adhesion triggers integrin clustering
and recruitment of adaptor molecules to focal adhesion
complexes that are composed of a variety of protein kinases
and adaptor molecules, including integrin-linked kinase
(ILK), phosphatidylinositolphosphate-3, 4, 5 triphosphate,
parvins, and paxillin; ILK activates Akt. In a growth factor
deficient environment, growth factor cannot bind to RTK
and, consequently, RTK to MAPK signaling does not occur.
Instead, ILK engages a number of adaptor molecules, most
notably PINCH-1 and Nck2. Nck2 subsequently activates
MAPK through interaction with the cytoplasmic domain of
RTK.39,38 The leptomeninges are a growth factor poor en-
vironment;40,41 as such, MAPK is unlikely to be activated by
RTK signaling. We hypothesized that integrin adhesion to
ECM in the process of leptomeningeal dissemination leads to
activation of Akt and MAPK.

This study attempted to extend Rutka et al’s previously
successful approach by combining their in vitro model13 with

recently developed immunoassays for integrin subunits and
their ECM-binding partners. We produced adhesion of me-
dulloblastoma cells to H4 ECM in vitro and used these novel
immunoassays to identify a9b1 integrin on the cell surface
and tenascin in the ECM as the molecules that mediate this
process. We then confirmed these findings in vivo through
immunohistochemistry of medulloblastoma surgical speci-
mens. Finally, we demonstrated that a9b1 integrin-mediated
adhesion is necessary for survival and proliferation of me-
dulloblastoma cells in a growth factor poor environment and
is associated with activation of the MAPK pathway.

MATERIALS AND METHODS
Reagents
Bovine serum albumin (BSA), EDTA, Triton-X100, fibronectin,
laminin, and human insulin-like growth factor 1 (IGF-1) were
purchased from Sigma (St Louis, MO, USA). Human tenascin-C
was purchased from Millipore/Chemicon (Billerica, MA, USA).
DMEM was purchased from ATCC (Manassas, VA, USA). All
other cell culture products were purchased from Invitrogen/
Gibco (Carlsbad, CA, USA). Monomeric and heterodimeric
disintegrins were purified from lyophilized viper venoms as
previously described.42,43

Antibodies
Adhesion and ELISA assays
Monoclonal antibodies to integrin subunits included anti-a1
clones AJH10 and AEF3 (gifts from Dr P Wainreb, Biogen);
anti-a2 clone 26G8 (gift from Dr P Wainreb, Biogen);
anti-a2 clone P1E6 (Millipore/Chemicon); anti-a3 clone
p1B5 (Millipore/Chemicon); anti-a4 clone HP2/1 (Beckman
Coulter, Fullerton, CA, USA); anti-a5 clone SAM1 (Beckman
Coulter); anti-a6 clone GoH3 (BD Pharmingen, San Diego,
CA, USA); anti-a9/b1 clone Y9A2 (Millipore/Chemicon);
anti-avb3 clone LM609 (Millipore/Chemicon); anti-avb5
clone P1F6 (Millipore/Chemicon); anti-b1 clone Lia1/2
(Beckman Coulter); anti-b2 clone YFC118 (Millipore/
Chemicon); anti-b4 clone 439-9B CBL545 (Millipore/
Chemicon); anti-aL clone 38 (Millipore/Chemicon); anti-aM
clone ICRF44 (Beckman Coulter). Polyclonal antibodies
to fibronectin, laminin, tenascin, and vitronectin were
purchased from Millipore/Chemicon as were monoclonal
antibody clones, 23IIC3 and 4H12, to collagen type IV and
IE5 to VCAM-1. Polyclonal antibody to TSP-1 was purchased
from Calbiochem. Another polyclonal antibody to VWF was
purchased from DacoCytomation (Carpentaria, CA, USA).

Immunohistochemistry
Rabbit polyclonal anti-a9 integrin was produced by im-
munization with the cytoplasmic domain of the integrin and
tested for specificity in western blots against SW480 cells
transfected with a9 integrin. Other antibodies included anti-
b1 integrin (Abcam, Clone 4B7R); Tenascin (Abcam, Clone
BC-24); Fibronectin (Transduction Laboratories, Lexington,
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KY, USA; Clone 10); Laminin (Sigma, rabbit polyclonal,
(L9393); Collagen IV (Dako, Clone CIV22).

Western Blots
Antibodies to pan Akt (11E7); phospho- Ser473-Akt
(193 H12), total extracellular signal-regulated kinase (Erk)
1/2 (p42/44) (9122) and phospho-Erk 1/2 (197G2) were
purchased from Cell Signaling Technologies (Danvers,
MA, USA). Anti-GRB2 (clone 81) was obtained from
Transduction Laboratories.

Cells and Cell Culture
H4 glioma and D283 medulloblastoma cell lines were ob-
tained from ATCC. The H4 glioma cell line was selected as
the source of meningeal ECM. Although previous studies
have demonstrated medulloblastoma cell adhesion to pri-
mary leptomeningeal cultures,13 these cells are not widely
available. Anatomy was the basis of selection of H4 cells as an
alternative; glia line the pial brain surface and constitute a
substantial proportion of the leptomeningeal cells.44,45 The
D283 medulloblastoma cell line was selected as the source of

medulloblastoma cells because these cells originated in a
tumor that had undergone leptomeningeal dissemination. All
cell lines were maintained in ATCC DMEM with 10% fetal
bovine serum. Cell counts were performed manually with a
Brightline hematocytometer (Fisher Scientific, Pittsburgh,
PA, USA). Cell viability was determined by trypan blue ex-
clusion. Of note, in our hands the D283 cell line grows largely
as nonadherent spheroids with a minority of the cells
loosely attached to the plastic tissue culture flasks. To avoid
introducing bias into the results by selecting one or the other
of these populations the cells were harvested from the flasks
with gentle scraping to insure that the adherent and non-
adherent cells were equally represented. This was followed by
trituration to dissociate the spheroids before counting. Ex-
periments that required serum-free medium were performed
in ATCC DMEM without additives. Petri dishes and 96-well
plates were coated with fibronectin and laminin at 5 mg/ml.
H4 ECM-coated surfaces were created with confluent cul-
tures of H4 glioma cells grown on plastic surfaces. The cells
surfaces were stripped with 0.1% Triton-X100 (30min at RT)
followed by 25mM NH4OH (1–2min) and three rinses with

Figure 1 Integrin-RTK signaling. A coordinate signaling pathway from both integrins and receptor tyrosine kinases mediates cell survival and proliferation.

Integrin-linked kinase (ILK) binds to the integrin b-subunit and is key to the assembly of a multiprotein complex; this multiprotein complex activates Akt.

RTKs are linked via PINCH and Nck2 and initiate the Ras–MAPK pathway. (Modified from Cordes et al38 with permission of the authors.)
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DH20.
46 This preparation was used directly as H4 ECM

for the experiments described. To achieve anchorage
independence, sterile Petri dishes without tissue culture
treated surfaces were coated with polyhema (Sigma;
12mg/ml in 95% ETOH, 0.8mg/cm2).

Cell Adhesion Assays to Antibodies, Disintegrins, and
Purified ECM Proteins
Antibodies and disintegrins were immobilized on 96-well
microtiter plates (Falcon, Pittsburgh, PA, USA) by overnight
incubation in phosphate-buffered saline (PBS) at 41C.
Antibodies were coated at 10 mg/ml, and disintegrins were
coated at 20 mg/ml. Wells were blocked with 1% BSA at 371C
for 1 h. Cells were labeled by incubation with 12.5–25 mM
5-chloromethylfluorescein diacetate (CMFDA) in Hank’s
balanced salt solution (HBSS) containing 1% BSA for 15min.
Unbound label was removed by washing in the same buffer.
(For experiments requiring calcium-free medium, calcium-
free HBSS supplemented with 5mM EDTA was used.)
Labeled cells were counted by hemocytometer and diluted to
a concentration of 106 cells/ml. A portion of 100 ml (105 cells)
was then added to each well and plates were incubated at
371C for 30min. Unbound cells were removed by washing,
and bound cells were lysed by the addition of 0.5% Triton
X-100. A standard curve was prepared using known con-
centrations of labeled cells. Plates were read using a Cytofluor
2350 fluorescence plate reader (Millipore) with a 485-nm
excitation filter and a 530-nm emission filter. For inhibition
studies, an identical protocol was followed, except that the
cells were incubated with antibodies (10 mg/ml) for 1 h at
371C before the addition of CMFDA. The percentage in-
hibition of binding was calculated by comparison with the
fluorescence values obtained from control samples without
added antibody. For the experiments with adhesion to pur-
ified ECM proteins, human tenascin-C and collagen IV were
coated at 1 ug/cm2 for 1 h at 371C. Assays were conducted
with the same technique as above except that wells were not
blocked with BSA and plates were incubated at 371C for
1.5–2 h to achieve adhesion.

Elisa Assay for ECM Protein Content of H4 Matrix
96-Well plates coated with H4 ECM were blocked with 1%
BSA in Tris-buffered saline (TBS)/Tween 20 (TBST) buffer at
371C for 1 h. Either rabbit polyclonal (1 mg/ml) or mouse
monoclonal (5 mg/ml) antibodies were added in TBST,
and the plate was incubated for 2 h at 371C. Wells were
washed four times with TBST. Alkaline phosphatase-
conjugated goat anti-rabbit or anti-mouse (Sigma) was
diluted 1:3000 in TBST plus 1% BSA and incubated for 1 h
with the plate. After washing four times with TBST, Sigma
104 alkaline phosphatase substrate at 1mg/ml in TBS,
pH 9.0, was added to each well. Color development was
monitored at 405 nm.

Immunocytochemistry
D283 cells were passaged onto H4 ECM-coated microscope
slide culture chambers (Labtech; Nalge NUNC Intl, Rochester,
NY, USA) and incubated for 24–48 h at 371C under standard
cell culture conditions. The resulting cultures were fixed in
cold (41C) acetone for 1–3min and then washed three times
in PBS. Slides were blocked in 10% normal horse serum in
PBS 0.1% BSA for 30min. Incubation in primary antibodies
(diluted in 0.1% PBS-BSA) was at 371C for 1 h. Slides were
washed three times in PBS and incubated in secondary
fluorescent antibody (1:500; Vector Labs, Burlingame, CA,
USA) in 0.1% PBS-BSA for 1 h. in dark. The resulting slides
were washed three times in PBS and mounted with water
soluble medium (Vectashield; Vector) before fluorescence
microscopy.

Immunohistochemistry
Antibodies to the a9 and b1 integrin subunits and the ECM
proteins tenascin, fibronectin, laminin, and collagen IV were
used to stain normal adult human cerebellum and seven
surgical specimens of cerebellar medulloblastoma with
leptomeningeal extension obtained from the UHN Pathology
Archive. The medulloblastoma specimens selected contained
both the primary tumor and the interface between cere-
bellum and leptomeningeal tumor. The histologic subtypes
of these tumors were classic4 and nodular/desmoplastic.3

Paraffin-embedded sections (4–6 mm thick) were dewaxed in
xylene and rehydrated in ascending alcohols. Following
antigen retrieval with Na citrate (10mM, pH 6.0 heating to
1201C for 2min in decloaking chamber (Biocare, Concord,
CA, USA)) or pepsin (1% in 0.01 N HCl, pH 2.0 for 15min
at 371C), sections were incubated with primary antibody
at room temperature. In preparation for anti-a9 integrin
staining, tissue was pretreated with pepsin; primary antibody
was applied at 1/4000 dilution for 1 h. For anti-b1 integrin
staining, tissue was pretreated with pepsin; primary antibody
was applied at 1/100 for 1 h. For antitenascin staining, tissue
was pretreated with pepsin; primary antibody was applied at
1/4000 dilution overnight. For antifibronectin staining, tissue
was pretreated with pepsin; primary antibody was applied at
1/1000 dilution for 1 h. For antilaminin staining, tissue was
with pepsin; primary antibody was applied at 1/100 dilution
for 1 h. For anti-collagen IV staining, tissue was pretreated
with citrate; primary antibody was applied at 1/100 dilution
for 1 h. Primary antibodies were subsequently amplified with
secondary antibody and then with avidin–biotin complex
coupled to horseradish peroxidase. Chromagen was devel-
oped with diaminobenzidine. Following light counterstaining
with hematoxylin, sections were dehydrated and coverslipped
with permount.

Western Blots
Cells were lysed in 50mmol/l HEPES (pH 7.5), 150mmol/l
NaCl, 1.5mmol/l MgCl2, 1mmol/l EGTA, 10% glycerol, 1%
Triton X-100, 1mmol/l phenylmethylsulfonyl fluoride,
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0.2mmol/l sodium orthovanadate. Aliquots of 50 mg of
protein extracts were separated in a 4% to 15% gradient
SDS–PAGE (Bio-Rad, Hercules, CA, USA) and transferred
onto nitrocellulose membranes. The resulting blots were
blocked in 5% nonfat milk and probed with anti-Erk 1/2 and
anti—phospho-Erk as well as 1/2 anti-Akt and anti-phospho-
Akt (Ser473). In addition, blots were probed for GRB2 as a
loading control. Western blots were developed with the ECL
system (Perkin Elmer) and archived onto KODAK X-OMAT
film. Films were scanned with Alphaimager HP and analyzed
with GelFox (Alphainnotech, San Leandro, CA, USA).

Charts and Statistical Measures
The between-group differences from cell adhesion assays,
ELISA assays, and western blots were initially tested for sig-
nificance via single-factor ANOVA. One-tailed t-tests were
subsequently performed to assess differences between groups;
unequal variance across groups was assumed. Po0.05 was
considered statistically significant for all comparisons.
All analyses and graphs were performed with Microsoft
Excel. Asterisks above bars indicate significant differences.
Error bars on graphs represent the standard error of the
mean. Each datapoint represents the average of the data
obtained from three to five experiments. In each experiment,
there were either duplicate or triplicate wells/conditions.
As such, each datapoint represents the average of 6–15
independent measures.

RESULTS
Medulloblastoma Cells Adhere to H4 Glioma Matrix
Figure 2 provides phase-contrast images of D283 cells grown
for 24 h on tissue culture plastic, laminin, fibronectin, and
H4 matrix. In comparison to the loose adherence normally
shown by D283 cells on tissue culture plastic (a) no quali-
tative increase in surface attachment was observed with
laminin (b); and a modest increase in attachment was ob-
served in the context of fibronectin (c). In contrast, D283
cells demonstrated significant adhesion to the H4 matrix (d);
the spreading expected to follow surface attachment in
epithelial cells was also observed.

Adhesion to H4 Glioma Matrix is Dependent on
Extracellular Caþ þ Concentration
When D283 cells were incubated in H4 matrix-coated wells
in the presence of Caþ þ , adhesion of 15 000 cells per well
was observed. In contrast, when these cells were incubated in
the absence of Caþ þ , adhesion of only 1000 cells per well
was observed. This 15-fold decrement in adhesion was sig-
nificant (Po0.02; Figure 3). This suggests that adhesion is
mediated by cationic dependent molecular pairings such
as those between integrins and ECM proteins; cationic
independent pairings would predominate if N-CAMs
accounted for the adhesion of D283 cells to H4 matrix.16,17

Medulloblastoma Cells Express a9 and b1 Integrin
Subunits
The level of integrin expression by D283 cells was determined
by semiquantitative assays of D283 cell adhesion to anti-
integrin antibodies immobilized on 96-well plates (Figure 4).
The 15 anti-integrin antibodies included 9 to a-subunits
(1, 2, 3, 4, 5, 6, 9, L, M), 3 to b-subunits,1,2,4 and 2 to
heterodimers avb3 and avb5. ANOVA demonstrated
significant differences among a-subunit group measures
(Po1.1� 10�11). Subsequent t-tests demonstrated that
expression of the a9-subunit was significantly greater than
expression of the eight other a-subunits and the av-hetero-
dimer (Po0.03 for all t-tests performed). Similarly, ANOVA
demonstrated significant differences among b-subunit group
measures (Po2.0� 10�11) and subsequent t-tests demons-
trated that expression of the b1-subunit was significantly
greater than expression of the two other b-subunits and the
avb3 and avb5 heterodimers (Po4.6� 10�5 for all t-tests
performed).

Antibodies and Disintegrins against a9 and b1 Integrins
Inhibit Adhesion of Medulloblastoma Cells to H4 Matrix
Eight of the antibodies used in the adhesion assays above (a1,
a2, a3, a9, b1, b2, b4, avb3) were added to aliquots of D283
cells at a concentration (10 mg/ml) sufficient to complex with
the majority of integrin subunits expressed on the cell sur-
faces. These cells were then placed in wells coated with H4
ECM and their adhesion to that surface assayed (Figure 5a).
Antibody to the a9-subunit inhibited 99% of adhesion and
antibody to the b1-subunit inhibited 100% of adhesion to
the H4 matrix. Again, ANOVA demonstrated significant
differences among the eight subunit groups (Po4.8� 10�14).
t-Tests demonstrated significantly greater inhibition for a9
and b1 than for all the other subunits (a1, a2, a3, b2, b4,
avb3; Po0.005 for all t-tests performed).

In a parallel experiment, disintegrin peptides, snake venom
proteins with selective abilities to complex with integrins,
were employed with the same assay design (Figure 5b).
VLO5, which binds to the a9b1 integrin heterodimer,43

inhibited 95% of adhesion. Echistatin, which does not block
the a9 integrin subunit but is a potent antagonist of aIIbb3,
avb3, and a5b1,42,47 inhibited only 25% of adhesion. The
extent of inhibition by VLO5 was significantly different from
the extent of inhibition by Echistatin (Po0.04).

Tenascin is the Predominant H4 ECM Protein
The a9b1 heterodimer is known to bind preferentially to
tenascin-C or VCAM-1 and the b1-subunit interacts with a
variety of ECM proteins including fibronectin, laminin,
vitronectin thrombospondin-1, collagen, and Von Willebrand
Factor.42,47 Antibodies to these proteins were used in an
ELISA format to assay H4 matrix-coated wells (Figure 6).
The signal for antitenascin was more than twice as intense as
that of the next largest signal (collagen IV). Single-factor
ANOVA demonstrated significant differences among signal
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intensities (Po3.4� 10�10), and subsequent t-tests demonstrated
significant difference between the tenascin signal and the intensity
of all other signals (Po0.006 for all t-tests performed).

Medulloblastoma Cells’ Adhesion to Purified Tenascin
is Dependent on a9 And b1 Integrins

As tenascin and collagen IV are the two most abundant
proteins in the H4 matrix, we compared D283 cell adhesion
to isolated, purified tenascin-C, and collagen IV. 8% of cells
adhered to tenascin-C, 4% to collagen IV, and 2% to the
control-untreated tissue culture plastic. (See Figure 7a.) Single-
factor ANOVA demonstrated significant differences among
these percentages (Po3� 10�4). Notably, the percent of D283
cells that adhered to tenascin-C was greater than the percent
that adhered to both collagen IV and control (Po0.049).

In parallel assays, D283 cells were incubated in anti-a9 or
anti-b1 integrin and then were placed in wells coated with
tenascin-C or collagen IV. Antibody to a9 inhibited 65% of
adhesion to tenascin-C but only 25% of adhesion to collagen
IV. Antibody to b1 inhibited 60% of adhesion to tenascin-C
but only 32% of adhesion to collagen IV. t-Tests demons-
trated significantly greater a9 and b1 inhibition of adhesion
to tenascin-C than to collagen IV (Po2� 10�4 and 0.03
respectively; asterisks in Figure 7b).

Figure 2 D283 medulloblastoma cells are more adherent to H4 matrix than tissue culture plastic, laminin, or fibronectin. Phase-contrast images

demonstrate the minimal adhesion characteristic of D283 cells grown on tissue culture plastic (a); the degree adhesion of cells grown on laminin was similar

to that of the control (b). Modest adhesion to fibronectin was observed (c). D283 cells adhered to the H4 matrix; the spreading expected to follow surface

attachment in epithelial cells was also observed (d).

Figure 3 Adhesion of D283 cells to H4 matrix is calcium dependent. In the

presence of Caþ þ , 15,000 cells adhered per well. In the absence of

Caþ þ , a fifteenfold decrement in the binding of D283 cells to H4 matrix

was observed (*Po0.02).
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a9 and b1 Integrin are Localized to D283 Cells by
Immunocytochemistry
D283 cells grown on the H4 matrix were labeled
immunocytochemically with both anti-a9 integrin and

FITC-labeled VLO5. Both ligands demonstrated pronounced
cell surface and cytoplasmic labeling (Figure 8a and b). Cells
stained in parallel with either antibody to b2 integrin or
FITC-labeled bitisatin (a disintegrin that does not bind either
the a9 or b1 integrin)42 did not label (data not shown).

Immunohistochemistry of Surgical Specimens
Demonstrates Increased a9 and b1 Integrin and
Tenascin Reactivity in Leptomeningeal
Medulloblastoma
In normal cerebellum (Figure 9a) antibodies to a9 integrin,
b1 integrin, tenascin, laminin, and collagen IV demonstrated
minimal staining. The endothelium was sparsely labeled by
a9, b1, and laminin; the vascular media also stained weakly

Figure 4 D283 cells preferentially express a9 and b1 integrin subunits. a9 expression was greater than expression of the other eight a-subunits (1, 2, 3, 4, 5,
6, L, M) (*Po0.03 for all t-tests performed). b1 expression was greater than expression of the two other b-subunits1,2,4 and the avb3 and avb5 heterodimers

(*Po4.6� 10�5 for all t-tests performed).

Figure 5 Inhibition of adhesion by antibodies and disintegrins against the

a9 and b1 integrin subunits. (a) Antibody to the a9-subunit inhibited 99%

of adhesion and antibody to the b1-subunit inhibited 100% of adhesion to

the H4 matrix (*Po0.005 for all t-tests performed). (b) VLO5 inhibited 95%

of adhesion. Echistatin inhibited only 25% of adhesion (*Po0.04).

Figure 6 Tenascin is the dominate protein expressed in H4 ECM. The signal

for antitenascin was more than twice as intense as that of the next largest

signal (collagen IV) (*Po0.006 for all t-tests performed).

Medulloblastoma: adhesion and survival

P Fiorilli et al

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 88 November 2008 1149

http://www.laboratoryinvestigation.org


with tenascin and collagen IV (black arrows). Focal
leptomeningeal staining for a9 integrin, b1 integrin,
tenascin, and laminin was observed (red arrows). There was

no staining for fibronectin; this is consistent with data
from previous studies of paraffin-embedded aldehyde-fixed
normal CNS tissues.48–52 However, our positive controls for
fibronectin including human lung, colon, and kidney did
demonstrate staining of the basement membrane side of the
vasculature (data not shown).

Primary medulloblastomas (Figure 9b) also demonstrated
low levels of reactivity for a9 and b1 integrin. In the seven
tumors, antibody to the a9 integrin labeled the cell surface of
two (one classic, one nodular) and anti-b1 integrin labeled
six (three classic, three nodular). Discrete tenascin reactivity
was observed between the cells of one nodular tumor.
Although the source of the tenascin staining is not known, it
may represent reactive astrocytic processes that are often
present in medulloblastomas53 and are known to express
tenascin.54 Vessels within six of these seven tumors demons-
trated reactivity for fibronectin (red arrows). Antilaminin
demonstrated focal positivity in two tumors (one classic, one
nodular) as well positive, more intense vascular staining than
the control cerebellum (red arrow). There was no collagen IV
staining of tumors. As with fibronectin and laminin,
occasional vascular staining was observed (red arrow). The
increased vascular labeling for fibronectin, laminin, and
collagen IV may reflect the diminution of blood brain
barrier integrity within the tumor that allows subendothelial
deposition of ECM proteins.51,52 In the nodular medullo-
blastomas, there was no preferential immunoreactivity of the
nodular or internodular regions with any of the antibodies.

Most leptomeningeal extensions of tumor (Figure 9c)
demonstrated increased reactivity for a9, b1, and tenascin.

Figure 7 Tenascin is the preferential substrate for a9b1 D283 adhesion.

(a) More D283 cells adhere to tenascin-C than to control uncoated wells or

to collagen IV (*Po0.049). (b) Antibodies to both a9 and b1 integrin inhibit

the adhesion of D283 cells to tenascin more than the adhesion to collagen

IV (*Po2� 10�4 and 0.03, respectively).

Figure 8 Immunocytochemistry of a9 and b1 integrins in D283 cells. Both cell surface and cytoplasm of D283 cells labeled with (a) anti-a9 integrin and (b) VLO5.
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The pattern of expression was similar across tumors, ie, a9
and b1 expression was greatest at the periphery of the lep-
tomeningeal tumor implants (black arrows) but tenascin was
concentrated in the deeper parts of the leptomeningeal tumor
(red arrows). This pattern characterized the two tumors

originally positive for a9, five of the six originally positive for
b1, and all six of those originally negative for tenascin. There
was no increased reactivity for fibronectin, laminin, or col-
lagen IV in any extension although occasional laminin po-
sitive vessels were seen (black arrows).

Figure 9 Immunohistochemistry: increased expression of a9, b1, and tenascin in leptomeningeal implants. (a) In the normal cerebellum, staining for a9, b1,
tenascin, laminin, and collagen IV was limited to sparse reactivity in vessels and meninges (black and red arrows, respectively). (All original images � 200

magnification.) (b) In primary medulloblastoma cell surface staining for a9 and b1 was present at low levels. Tenascin reactivity was observed between the

cells of one tumor. There was focal laminin positivity in two tumors. Vascular staining for fibronectin, laminin, and collagen IV was observed (red arrows). (All

original images � 400 magnification.) (c) In leptomeningeal implants, staining for a9, b1 (periphery, black arrows), and tenascin (interface of tumor and

cerebellum red arrows) was considerable. Occasional vessels in the implants stained for laminin (black arrows). (All original images � 200 magnification.)
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Matrix Adhesion is Necessary for D283 Cell Survival in
Serum-Free Conditions
To test the effect of surface adhesion on the survival of lepto-
meningeal tumor, 105 D283 medulloblastoma cells were
plated in wells with serum-free medium (Figure 10). The
viability of cells plated on H4 matrix was only 55% at 24 h
and 40% at 48 h but was restored to 80% of the input value
by 72 h due to proliferation. In the absence of H4 matrix,
80% of cells were nonviable after 72 h. Addition of blocking

antibody to either a9 or b1 integrin to cells cultured in H4
matrix-coated wells produced survival curves similar to those
observed for the nonadherent cells. Microscopic observation
of the wells to which antibody was added revealed that cells
failed to adhere to substrate; this suggests that surface
adhesion and cell survival are closely linked in serum-free
cultures.

The decreased survival on days 1 and 2 among D283 cells
on ECM is consistent with the absence of normal growth

Figure 9 Continued.
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conditions for these cells, ie, the absence of nonadherent
spheroids. Adhesion to matrix eliminates the spheroid for-
mation and, as a result, is likely to decrease cell–cell signaling;
as such, additional time may be required for cells to develop
alternate signaling pathways that promote proliferation.

Effects of Matrix Adhesion on Activation of Akt and
MAPK
D283 medulloblastoma cells cultured in serum-free DMEM
(ATCC) for 18–24 h in surface nonadherent conditions

(polyhema-coated plates) were transferred to H4-coated
plates. Parallel cultures in dishes coated with polyhema to
block adhesion but treated with IGF1 (50 ng/ml for 0.5 h)
served as positive controls; cells that were not transferred
served as negative controls. Plates were harvested at 0.5, 1, 2,
and 4 h. Proteins were extracted (50 mg per lane electro-
phoresed on 7.5%¼ acrylamide gels) and blotted to nylon
membranes. The membranes were sequentially probed with
antibodies to phospho-Erk1/2 and total Erk1/2. Membranes
were reprobed with antibodies to phospho-Akt (Ser 473) and

Figure 9 Continued.
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total Akt. Single-factor ANOVA demonstrated significant
differences in levels of Erk1/2 phosphorylation across groups
(Po0.05; Figure 11a). Phospho-Erk1/2 demonstrated a
threefold increase relative to the positive control at 0.5 h
(Po0.02). Phospho-Erk1/2 demonstrated a significant
increase relative to the negative control at 0.5 and 2 h follow-
ing transfer to the adhesive matrix (Po0.007 and Po0.009,
respectively) but was not significantly different at 4 h (Po0.04)
Single-factor ANOVA demonstrated no significant differences
in Akt phosphorylation across groups (Po0.81; Figure 11b).

DISCUSSION
Both the in vitro and the in vivo data from this study suggest
that adhesion of D283 medulloblastoma cells to the meninges
is mediated by the interaction of cell surface a9 and b1 in-
tegrins with ECM tenascin. In vitro, a9 and b1 were the
predominant integrin subunits expressed by the D283 cells
and tenascin was the dominant protein expressed by the H4
matrix. Consistent with cationic dependent molecular pair-
ings known to characterize integrins and ECM proteins,
adhesion of the D283 cells to the H4 ECM was Caþ þ
concentration dependent. Blockade of the a9 and b1
integrins eliminated binding both to the H4 ECM and to
tenascin-C. The percent of D283 cells that adhered to
tenascin-C was significantly greater than the percent that
adhered to collagen IV, the second most abundant protein in
the H4 matrix. In vivo, immunohistochemistry of surgical
specimens demonstrated increased expression of a9 and b1
integrins as well as tenascin at the junction of medullo-
blastoma and meninges.

The data from this study also suggest that, in a growth
factor deficient environment, a9 and b1 adhesion to ECM is
critical to medulloblastoma cell survival and proliferation.
D283 cells survived and proliferated in serum-free conditions
following adhesion to ECM. Blockade of adhesion with an-
tibodies to a9 and b1 integrins eliminated these survival and

proliferation advantages. D283 cell adhesion, in turn, sti-
mulated transient phosphorylation of MAPK; phosphoryla-
tion was not observed in the absence of adhesion. These
MAPK activation data are similar to results of previous
studies of integrin-mediated cell adhesion to substrate.55,56 In
our study, 72 h elapsed before the proliferative advantage was
observed. This interval may be explained by the known
nuclear translocation of ERK1 and ERK2 that follows MAPK
phosphorylation. This, in turn, phosphorylates transcription
factors such as ELK1 and stimulates expression of cyclin D1,
inducing cell cycling.57,58

Our finding of preferential MAPK activation following
integrin-mediated adhesion is distinct from the marked
activation of both the Akt and MAPK pathways that char-
acterizes signaling following adhesion with the majority of
integrin heterodimers.37-39 Notably, the differential activation
pattern we observed also describes the differential signaling of
a4b1, the integrin with greatest structural similarity to
a9b1;43,59,60 this suggests the hypothesis that the similar
signaling patterns of a9b1 and a4b1 are the result of their
structural similarities. It also suggests that the MAPK path-
way may play a greater role than the Akt pathway in the

Figure 10 D283 cells are rescued from death by adhesion to H4 matrix.

D283 cells cultured in serum-free medium (SFM) in the presence of H4

matrix survived and proliferated. Absence of matrix or blockade by a9 or b1
integrin eliminated the survival benefit.

Figure 11 MAPK is activated following matrix adhesion of D283

medulloblastoma cells. Adhesion of D283 cells to H4 matrix resulted in

threefold increase in MAPK phosphorylation (**Po0.02). At 2 hours, MAPK

phosphorylation was still significantly greater than the controls (*Po0.009)

(a). It did not activate Akt (b).
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survival and proliferation of other cancer cells that express
predominantly the a9b1 or a4b1 integrins.

The data from this study support the use of H4 glioma
cells as a matrix source for the study of leptomeningeal dis-
semination. Our demonstration of adhesion, survival, and
proliferation with H4 glioma cells as the substrate was similar
to the results of the previous study that employed primary
leptomeningeal cells as the substrate.13 In addition, the
similarities in results of the two studies parallel similarities in
the ECM protein profiles of the two substrates, ie, expression
of fibronectin, laminin, and collagen type IV.9,11,14 The sig-
nificant difference in the results of the two studies was our
identification of tenascin as the dominant protein in the
adhesion process; assays for tenascin were not widely avail-
able when the earlier investigation was conducted and, as
such, the roles of tenascin in adhesion to the different sub-
strates cannot be compared. The expression of tenascin in the
in vivo meninges adjacent to disseminated medulloblastoma
is consistent with the viability of H4 glioma cells as an
appropriate matrix source for investigations of leptome-
ningeal dissemination. The additional protein profile simi-
larities of H4 glioma cells and in vivomeninges, ie, expression
of fibronectin, laminin, vitronectin, thrombospondin, and
collagen type IV but no detectable VCAM or von Willebrand
factor25–27,30–32,61,62 (also our immunohistochemical data)
provide additional evidence for the appropriateness of H4
glioma cells as a substrate. Finally, the similarities in results
between our study and the previous study13 are consistent
with the similarities in the anatomical roles of the H4 glioma
and primary leptomeningeal cells. Both types of cells are
observed in the meninges; the leptomeningeal cells comprise
the arachnoidal trabeculae and the glial cells form the pia
limitans.44,45

In summary, the results of this study provide preliminary
evidence that coculture of D283 medulloblastoma cells with
H4 glioma matrix results in adhesion of D283 cells to the
ECM, and improved survival relative to nonadherent cells.
Our results in vitro and in vivo also suggest that the expres-
sion of a9b1 by medulloblastoma cells and tenascin in the
ECM is necessary for adhesion. Additional in vitro results
suggest that this adhesion activates the MAPK pathway and is
necessary for both cell survival and proliferation.
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