Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Evaluation of polymerase chain reaction methods for detection of murine Helicobacter in nine diagnostic laboratories

Abstract

Helicobacter infections of laboratory animals may influence the results of in vivo experiments, necessitating diagnostic methods that are specific, sensitive and rapid. Polymerase chain reaction (PCR) is currently the preferred diagnostic tool for detecting Helicobacter infections in mice; however, detection ability may vary considerably among laboratories. Nine commercial and academic European labs participated in a 3-year ring study that was designed to explore this problem. The authors sought to identify which PCR methods were used for detection of murine Helicobacter spp. in fecal pellets and to compare the sensitivity, specificity and reproducibility of these methods. The study consisted of four rounds in which labs tested mouse fecal samples spiked with H. bilis, H. hepaticus or H. muridarum. The first round showed differences of up to 3 logs in detection sensitivity. Over the course of the study, sensitivity, specificity and reproducibility of PCR results in all labs improved substantially. By the study's conclusion, diagnostic ability in all labs was sufficient to reliably detect Helicobacter in naturally infected mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lee, A. et al. Helicobacter muridarum sp. nov., a microaerophilic helical bacterium with a novel ultrastructure isolated from the intestinal mucosa of rodents. Int. J. Syst. Bacteriol. 42, 27–36 (1992).

    Article  CAS  Google Scholar 

  2. Schauer, D.B., Ghori, N. & Falkow, S. Isolation and characterization of “Flexispira rappini” from laboratory mice. J. Clin. Microbiol. 31, 2709–2714 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dewhirst, F.E. et al. 'Flexispira rappini' strains represent at least 10 Helicobacter taxa. Int. J. Syst. Evol. Microbiol. 50, 1781–1787 (2000).

    Article  CAS  Google Scholar 

  4. Fox, J.G. et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J. Clin. Microbiol. 32, 1238–1245 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Foltz, C.J., Fox, J.G., Yan, L. & Shames, B. Evaluation of antibiotic therapies for eradication of Helicobacter hepaticus. Antimicrob. Agents Chemother. 39, 1292–1294 (1995).

    Article  CAS  Google Scholar 

  6. Mendes, E.N. et al. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int. J. Syst. Bacteriol. 46, 916–921 (1996).

    Article  CAS  Google Scholar 

  7. Moura, S.B. et al. Ultrastructure of Helicobacter trogontum in culture and in the gastrointestinal tract of gnotobiotic mice. J. Med. Microbiol. 47, 513–520 (1998).

    Article  CAS  Google Scholar 

  8. Shen, Z. et al. Helicobacter rodentium sp. nov., a urease-negative Helicobacter species isolated from laboratory mice. Int. J. Syst. Bacteriol. 47, 627–634 (1997).

    Article  CAS  Google Scholar 

  9. Franklin, C.L. et al. Helicobacter typhlonius sp. nov., a novel murine urease-negative Helicobacter species. J. Clin. Microbiol. 39, 3920–3926 (2001).

    Article  CAS  Google Scholar 

  10. Robertson, B.R., O'Rourke, J.L., Vandamme, P., On, S.L. & Lee, A. Helicobacter ganmani sp. nov., a urease-negative anaerobe isolated from the intestines of laboratory mice. Int. J. Syst. Evol. Microbiol. 51, 1881–1889 (2001).

    Article  CAS  Google Scholar 

  11. Shen, Z. et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter 10, 59–70 (2005).

    Article  CAS  Google Scholar 

  12. Ward, J.M., Anver, M.R., Haines, D.C. & Benveniste, R.E. Chronic active hepatitis in mice caused by Helicobacter hepaticus. Am. J. Pathol. 145, 959–968 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fox, J.G. et al. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J. Clin. Microbiol. 33, 445–454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ward, J.M. et al. Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab. Anim. Sci. 46, 15–20 (1996).

    CAS  PubMed  Google Scholar 

  15. Shomer, N.H., Dangler, C.A., Schrenzel, M.D. & Fox, J.G. Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect. Immun. 65, 4858–4864 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cahill, R.J. et al. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun. 65, 3126–3131 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Franklin, C.L. et al. Enterohepatic lesions in SCID mice infected with Helicobacter bilis. Lab. Anim. Sci. 48, 334–339 (1998).

    CAS  PubMed  Google Scholar 

  18. Shomer, N.H., Dangler, C.A., Marini, R.P. & Fox, J.G. Helicobacter bilis/Helicobacter rodentium co-infection associated with diarrhea in a colony of scid mice. Lab. Anim. Sci. 48, 455–459 (1998).

    CAS  PubMed  Google Scholar 

  19. Fox, J.G. et al. A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. Infect. Immun. 67, 1757–1762 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Franklin, C.L. et al. Enteric lesions in SCID mice infected with “Helicobacter typhlonicus,” a novel urease-negative Helicobacter species. Lab. Anim. Sci. 49, 496–505 (1999).

    CAS  PubMed  Google Scholar 

  21. Shomer, N.H. et al. Cholangiohepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac:ICR:HascidfRF mice. Exp. Biol. Med. (Maywood) 226, 420–428 (2001).

    Article  CAS  Google Scholar 

  22. Burich, A. et al. Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G764–778 (2001).

    Article  CAS  Google Scholar 

  23. Jiang, H.Q., Kushnir, N., Thurnheer, M.C., Bos, N.A. & Cebra, J.J. Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology 122, 1346–1354 (2002).

    Article  Google Scholar 

  24. Whary, M.T. & Fox, J.G. Natural and experimental Helicobacter infections. Comp. Med. 54, 128–158 (2004).

    CAS  PubMed  Google Scholar 

  25. Nicklas, W. et al. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab. Anim. 36, 20–42 (2002).

    Article  CAS  Google Scholar 

  26. Riley, L.K., Franklin, C.L., Hook, R.R. Jr. & Besch-Williford, C. Identification of murine helicobacters by PCR and restriction enzyme analyses. J. Clin. Microbiol. 34, 942–946 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Beckwith, C.S., Franklin, C.L., Hook, R.R. Jr., Besch-Williford, C.L. & Riley, L.K. Fecal PCR assay for diagnosis of Helicobacter infection in laboratory rodents. J. Clin. Microbiol. 35, 1620–1623 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahler, M. et al. Comparison of four diagnostic methods for detection of Helicobacter species in laboratory mice. Lab. Anim. Sci. 48, 85–91 (1998).

    CAS  PubMed  Google Scholar 

  29. Hodzic, E., McKisic, M., Feng, S. & Barthold, S.W. Evaluation of diagnostic methods for Helicobacter bilis infection in laboratory mice. Comp. Med. 51, 406–412 (2001).

    CAS  PubMed  Google Scholar 

  30. Jacobsen, K. et al. Monitoring a mouse colony for Helicobacter bilis using a Helicobacter-genus-specific nested PCR. Lab. Anim. 39, 400–412 (2005).

    Article  CAS  Google Scholar 

  31. Dew, J.A. Clifton, L.G., Sander, B.L. & Reynolds, R.P. Comparison of results of Helicobacter tests performed by commercial laboratories. Contemp. Top. Lab. Anim. Sci. 36, 60 (1997).

    Google Scholar 

  32. Fischer, G. Helicobacter-Infektionen bei Nagern: Etablierung neuer real-time PCR Assays, Kultivierung und Infektionsversuche mit ausgewählten Helicobacter-Stämmen. Thesis, Univ. Zurich (2004).

  33. Monteiro, L. et al. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 35, 995–998 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shames, B. et al. Identification of widespread Helicobacter hepaticus infection in feces in commercial mouse colonies by culture and PCR assay. J. Clin. Microbiol. 33, 2968–2972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong, L. et al. A sensitive and specific PCR method to detect Helicobacter felis in a conventional mouse model. Clin. Diagn. Lab. Immunol. 3, 73–78 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Bulian, C. Ludwig, S. Bensch, S. Scharold, I. Krüger, M. Wöhl, S. Bellgardt, K. Mueller and E. Gubanow for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Mahabir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moerth, C., Mahabir, E., Brielmeier, M. et al. Evaluation of polymerase chain reaction methods for detection of murine Helicobacter in nine diagnostic laboratories. Lab Anim 37, 521–527 (2008). https://doi.org/10.1038/laban1108-521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban1108-521

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing